

- A symbolic marking must refer, in its definition, to the these static subclasses, otherwise the underlying represented markings will be spurious!
- The efficiency of the constructed SRG (the reduction factor) depends on these static subclasses:
 - When each class of the net contains only one static subclass, the reduction is maximal.
 - When the classes of the net are partitioned into static subclasses with only one element, there is no reduction.

How to deal with this last case.

LIP W (SV

Example: critical section with priorities (1/2)

- All places have $C = \{p_1, p_2, p_3\}$ as colour domain.
- Because of the guard [X < Y] on transition t₄, C has to be partitioned into 3 static subclasses:
 C = D₁ ∪ D₂ ∪ D₃, where D_i = {p_i}, for i ∈ {1, 2, 3}.
- The guard [X < Y] is written: $\bigvee_{i < i} (X \in D_i \land Y \in D_i)$

Example: critical section with priorities (2/2)

- Since all defined static subclasses are singletons, and
- the symmetries of a SN are defined according to these subclasses (i.e. only objects of the same subclass are symmetrical),
- then, the constructed SRG of this SN has the same size as the RG, i.e. no reduction is possible!
- Is it possible to deal with this problem?

SN and partial symmetries: observation

- The problem (asymmetry) comes from a single transition (t₄) and is propagated on whole net!
- The guard of enabling and the firing of t₄ distinguishes the objects ⇒ objects are asymmetrical.
- The enabling and the firing of transitions t₁, t₂, t₃ and t₅ do not need information about the identity of the objects ⇒ objects are symmetrical.

SN and partial symmetries: idea

- Forget the asymmetries (static subclasses) while not needed to test the enabling of a transition.
- Reintroduce the static subclasses while testing the enabling of asymmetrical transitions (transitions that refer to static subclasses).
- This way, the propagation of asymmetries will be contained in small parts.

SN and partial symmetries: Extended Symbolic Marking

(Idle, wait, g.Select, CS, free)

$$(Z_1, 0, Z_2, 0, Z_3)$$

 $|Z_1|=1, |Z_2|=2$

$$E_1: Z_1 = \{3\}, Z_2 = \{1,2\}$$

$$E_2: Z_1 = \{2\}, Z_2 = \{1,3\}$$

$$E_3: Z_1 = \{1\}, Z_2 = \{2,3\}$$

Symmetrical Representation (SR)

Eventuality (E)

SN and partial symmetries: esm firings

SN and partial symmetries: Extended SRG (1/3)

 M_7

SN and partial symmetries: Extended SRG (2/3)

SN and partial symmetries: Extended SRG (3/3)

Conclusion

- The ESRG approach tackles the limitation of the SRG by alternating the two symmetrical and asymmetrical levels.
- When the system few asymmetrical transitions,
 - almost all the ESRG is constructed using SRs, and
 - few eventualities are developed.
 - Hence, the ESRG presents a high reduction degree with respect to the SRG.
- However, when the system is highly asymmetric,
 - a big amount of eventualities is developed.
 - Hence, the ESRG will have almost the same size then the SRG (RG), i.e., almost no reduction is obtained
- This can be handled thanks to local symmetries (not detailed here)

Conclusion

- The ESRG approach tackles the limitation of the SRG by alternating the two symmetrical and asymmetrical levels.
- When the system few asymmetrical transitions,
 - almost all the ESRG is constructed using SRs, and
 - few eventualities are developed.
 - Hence, the ESRG presents a high reduction degree with respect to the SRG.
- However, when the system is highly asymmetric,
 - a big amount of eventualities is developed.
 - Hence, the ESRG will have almost the same size then the SRG (RG), i.e., almost no reduction is obtained
- This can be handled thanks to local symmetries (not detailed here)

Next, how to better parameterize models

How to reduce interleaving