Petri Nets Tutorial, from Symmetric Nets to Symmetric Nets with Bags (session 1)

Souheib Baarir, Fabrice Kordon, Laure Petrucci

Souheib.Baarir@lrde.epita.fr Fabrice.Kordon@lip6.fr Laure.Petrucci@lipn.univ-paris13.fr LRDE, Epita LIP6, Université Pierre & Marie Curie LIPN, Université Paris 13

June 23th, 2015

Thanks

Thanks for their support to...

project ImpRo/ANR-2010-BLAN-0317 project NEOPPOD (FEDER Île-de-France/System@tic-free software) Inria for an engineer LIP6/Move, LIPN, LDRE, LSV

and of course ...

All the developers of Cosy Verif (tools and platform)

Outline

ir. F. Kordor

Introduction

- Petri net classes.
- Symmetric Nets (SN).
- Syntax and semantics of SN
 - Syntax.
 - Semantics (Firing rule).
 - Reachability Graph construction.
- SN and the verification of distributed systems
 - Atomic propositions.
 - Reachability properties.
 - Temporal properties.

Introduction

C BY-P

2015

First of all...

You know about Place/Transition Petri nets:

- about their structure
- about their marking
- about their reachability graph

First of all...

You know about Place/Transition Petri nets:

- about their structure
- about their marking
- about their reachability graph

Nice notation to model and analyse distributed systems...

... but ...

. complex to handle

- need for parametrisation
- need to represent data
- need for a compact and easy-to-read notation

First of all...

You know about Place/Transition Petri nets:

- about their structure
- about their marking
- about their reachability graph

Nice notation to model and analyse distributed systems...

... but ...

. complex to handle

- need for parametrisation
- need to represent data
- need for a compact and easy-to-read notation

Let's have a deeper look on this now

Petri net classes.¹

Level 1: PNs characterised by places which can represent boolean values,

- i.e. a place is marked by at most one unstructured token,
- Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.

¹Made by *Monika Trompedeller* in 1995 (based on a survey by *L. Bernardinello and F. De Cindio* from 1992)

Petri net classes.1

- Level 1: PNs characterised by places which can represent boolean values,
 - i.e. a place is marked by at most one unstructured token,
 - Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.
- Level 2: PNs characterised by places which can represent integer values,
 - i.e. a place is marked by a number of unstructured tokens,
 - Place/Transition (P/T) Nets,...

¹Made by *Monika Trompedeller* in 1995 (based on a survey by *L. Bernardinello and F. De Cindio* from 1992)

Petri net classes.1

- Level 1: PNs characterised by places which can represent boolean values,
 - i.e. a place is marked by at most one unstructured token,
 - Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.
- Level 2: PNs characterised by places which can represent integer values,
 - i.e. a place is marked by a number of unstructured tokens,
 - Place/Transition (P/T) Nets,...
- Level 3: PNs characterised by places which can represent high-level values,
 - i.e. a place is marked by a multiset of structured tokens.
 - Coloured Petri Nets, Algebraic Petri Nets, Symmetric Nets (a.k.a. Well-Formed Nets),...

¹Made by *Monika Trompedeller* in 1995 (based on a survey by *L. Bernardinello and F. De Cindio* from 1992)

Petri net classes.1

- Level 1: PNs characterised by places which can represent boolean values,
 - i.e. a place is marked by at most one unstructured token,
 - Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.
- Level 2: PNs characterised by places which can represent integer values,
 - i.e. a place is marked by a number of unstructured tokens,
 - Place/Transition (P/T) Nets,...
- Level 3: PNs characterised by places which can **represent high-level** values,
 - i.e. a place is marked by a multiset of structured tokens.
 - Coloured Petri Nets, Algebraic Petri Nets, Symmetric Nets (a.k.a. Well-Formed Nets),...

¹Made by *Monika Trompedeller* in 1995 (based on a survey by *L. Bernardinello and F. De Cindio* from 1992)

Symmetric Nets (SN): an informal definition

- Each place *p* is characterised by a colour domain C(p).
- A token of p is an element of C(p).
- Each transition *t* is characterised by a colour domain C(t).
- The colour domain of a transition characterises the signature of the transition.
- The colour functions on arcs determine the instances of tokens that are consumed and produced during the firing of a transition.

$\langle f_1 \rangle$	$\langle f_2 \rangle$
t =	
	$\langle f_3 \rangle$
	$\stackrel{\downarrow}{\bigcirc}$
	p_3

Symmetric Nets (SN): an example

- Processes of class Cl = {p₁,..., p_n}, in mutual exclusion on a untyped resource.
- A process is either in an Idle state, or in a Waiting state, or in a Busy state.
- To move from the Waiting state to the Busy state, a process needs the resource.

$$\begin{split} & \mathsf{C}(\mathsf{Idle}) = \mathsf{C}(\mathsf{Waiting}) = \mathsf{C}(\mathsf{Busy}) = \textit{CI} \\ & \mathsf{C}(\mathsf{Res}) = \{ \epsilon \} \\ & \mathsf{C}(t_1) = \mathsf{C}(t_2) = \mathsf{C}(t_3) = \textit{CI} \end{split}$$

 $f: CI \to CI$ $M_0(Idle) = CI.AII$

Symmetric Nets (SN): another example

• n_1 processes of class $Cl_p = \{p_1, ..., p_{n_1}\}$, in mutual exclusion on n_2 resources of class $Cl_r = \{r_1, ..., r_{n_2}\}$.

 To move from Waiting to Busy, a process p_i needs a resource r_j.

 $\begin{array}{l} \mathsf{C}(\mathsf{Idle}) = \mathsf{C}(\mathsf{Waiting}) = \mathit{Cl}_p \\ \mathsf{C}(\mathsf{Res}) = \mathit{Cl}_r \\ \mathsf{C}(\mathsf{Busy}) = \mathit{Cl}_p \times \mathit{Cl}_r \end{array}$

 $C(t_1) = Cl_p$ $C(t_2) = C(t_3) = Cl_p \times Cl_r$ $f : Cl_p \times Cl_r \rightarrow Cl_p$ $g : Cl_p \times Cl_r \rightarrow Cl_r$

 $M_0(Idle) = Cl_p.All$; $M_0(Res) = Cl_r.All$

Conclusion

- you have an idea on Coloured Nets in general ...
- ... and Symmetric Nets in particular

Conclusion

At this stage:

- you have an idea on Coloured Nets in general ...
- ... and Symmetric Nets in particular

Let's go for a more precise semantics (next sequence)

Syntax and semantics of SN

Introduction

- have an idea on Coloured Nets in general ...
- ... and Symmetric Nets in particular

Introduction

- have an idea on Coloured Nets in general ...
- ... and Symmetric Nets in particular

Let's go for a more precise semantics

Recall: multisets (Bags)

- Let A be a non empty finite set.
- A bag a on A is a function:

 $a: A \to \mathbb{N}$

 $x \rightarrow a(x)$

a(x) denotes the number of occurrences of x in a.

• We note:
$$a = \sum_{x \in A} a(x) \cdot x$$

Bag(A) denotes the set of multisets on A.

Consider the following functions:

 $f: Bag(C_1) \rightarrow Bag(C_2)$ $g: Bag(C'_1) \rightarrow Bag(C'_2)$ $h: Bag(C) \rightarrow Bag(C_1)$

then

and

$$\begin{array}{l} \langle f,g\rangle : Bag(C_1) \times Bag(C_1') \to Bag(C_2) \times Bag(C_2') \\ (x,y) \to \langle f(x),g(y) \rangle \end{array}$$

$$f \circ h : Bag(C) \to Bag(C_2)$$

 $x \to f(h(x))$

SN definition: syntax

• A Symmetric Net is a tuple $\langle P, T, C, W^-, W^+, M_0 \rangle$ where:

- ▶ *P* is the set of places, *T* is the set transitions $(P \cap T = \emptyset, P \cup T \neq \emptyset)$.
- C defines for each place and transition a colour domain.
- W^- (= Pre) (resp. W^+ = Post), indexed on $P \times T$, is backward (resp. forward) incidence matrix of the net.
- $W^{-}(p, t)$ and $W^{+}(p, t)$ are linear colour functions defined from C(t) to Bag(C(p)).
- M_0 is the initial marking of the net such that $M_0(p) \in Bag(C(p))$.
- ▶ Transitions may be guarded by functions: $C(t) \rightarrow \{0, 1\}$.
- Colour domains are generally cartesian products.

SN definition: semantics

• Let $N = \langle P, T, C, W^-, W^+, M_0 \rangle$ be a SN:

- A marking M of N is a vector: $M(p) \in Bag(C(p))$.
- A transition t is **enabled** for an instance $c_t \in C(t)$ and a marking M iff:
 - * either t is not guarded, or the guard evaluates to true (for c_t), and
 - ★ $\forall p \in P, M(p) \ge W^{-}(p, t)(c_t)$
- M', the marking reached after the firing of t for an instance c_t , from the marking M is defined by:

$$\forall p \in P, M'(p) = M(p) - W^{-}(p, t)(c_t) + W^{+}(p, t)(c_t)$$

We note:

$$M[(t, c_t))M' \text{ or } M \xrightarrow{(t, c_t)} M'$$

Example of firing in SN (1/2)

- Let $c_1 \in C1$, $c_2 \in C_2$ and $m_0 = p_1(c_1) + p_2(c_2)$
- *t* is **enabled** for (c_1, c_2) iff:
 - p_1 is marked by a token of colour $\langle X_1 \rangle$
 - 2 p_2 is marked by a token of colour $\langle X_2 \rangle$
- If t is **fired** for (c_1, c_2) then:
 - A token of colour $\langle X_1 \rangle$ is removed from p_1
 - 2 A token of colour $\langle X_2 \rangle$ is removed from p_2
 - A token of colour $\langle c_1, c_2 \rangle$ is produced in $p_3 : \langle X_1, X_2 \rangle (c_1, c_2) = \langle c_1, c_2 \rangle$

Example of firing in SN (2/2)

 $C_1 = \{a, b, c\} \quad C_2 = \{\alpha, \beta\}$ p_1 p_2 p_1 p_2 α C₂ a + cCo $\langle X_2 \rangle$ $\langle X_2 \rangle$ $\langle X_1 \rangle$ $\langle X_1 \rangle$ $(t,\langle a,\alpha\rangle)$ $C_1 \times C_2$ $C_1 \times C_2$ $\langle X_1, X_2 \rangle$ $\langle X_1, X_2 \rangle$ $\langle {\it C}, \beta \rangle$ $C_1 \times C_2$ $C_1 \times C_2$ $\langle c, \beta \rangle$ $\langle \boldsymbol{a}, \boldsymbol{\alpha} \rangle$ p_3 p_3 $m = p_1(a+c) + p_2(\alpha) + p_3(\langle c, \beta \rangle)$ $m' = p_1(c) + p_3(\langle c, \beta \rangle + \langle a, \alpha \rangle)$

19

Let: • $C = \prod_{i=1}^{n} \prod_{j=1}^{e_i} C_i$, and • $c = \langle c_1^1, c_1^2, ..., c_1^{e_1}, ..., c_n^1, c_n^2, ..., c_n^{e_n} \rangle \in C$

Basic colour

TU A colour domain constructed on top of a Cartesian product of colour classes, in which C_i appears e_i times.

• Let: • $C = \prod_{i=1}^{n} \prod_{j=1}^{e_i} C_i$, and • $c = \langle c_1^1, c_1^2, ..., c_1^{e_1}, ..., c_n^1, c_n^2, ..., c_n^{e_n} \rangle \in C$

CC BY-NC-S

Let:

$\cdot C = \prod_{i=1}^n \prod_{j=1}^{e_i} C_i$, and

• $c = \langle c_1^1, c_1^2, ..., c_1^{e_1}, ..., c_n^1, c_n^2, ..., c_n^{e_n} \rangle \in C$

Identity/Projection:

- noted by a variable $\langle X \rangle$, Y, or $\langle X_1 \rangle$, or X_1^1 , or p, q,...
- $X_i^j(c) = c_i^j$ (e.g. $q(\langle p, q, r \rangle) = q$).

• Let:

• $C = \prod_{i=1}^n \prod_{j=1}^{e_i} C_i$, and

• $c = \langle c_1^1, c_1^2, ..., c_1^{e_1}, ..., c_n^1, c_n^2, ..., c_n^{e_n} \rangle \in C$

Identity/Projection:

- noted by a variable $\langle X \rangle$, Y, or $\langle X_1 \rangle$, or X_1^1 , or p, q,...
- $X_i^j(c) = c_i^j$ (e.g. $q(\langle p, q, r \rangle) = q$).

Successor (on a circularly ordered C_i):

- noted X_i ++ or $(X_i \oplus 1)$ or X_i !
- X_i^j ++(c) = successor(c_i^j).

Let:

• $C = \prod_{i=1}^n \prod_{j=1}^{e_i} C_j$, and

• $c = \langle c_1^1, c_1^2, ..., c_1^{e_1}, ..., c_n^1, c_n^2, ..., c_n^{e_n} \rangle \in C$

Identity/Projection:

- The successor relation is defined by the • noted by a variable $\langle X \rangle$, enumeration order of elements in class C_i .
- $X_i^j(c) = c_i^j$ (e.g. $q(\langle p, q, r \rangle) = q$).

Successor (on a circularly ordered C_i):

- noted X_{i++} or $(X_i \oplus 1)$ or $X_i!$
- $X_i^j + +(c) = successor(c_i^j)$.

Let:

$\cdot C = \prod_{i=1}^n \prod_{j=1}^{e_i} C_j$, and

• $c = \langle c_1^1, c_1^2, ..., c_1^{e_1}, ..., c_n^1, c_n^2, ..., c_n^{e_n} \rangle \in C$

Identity/Projection:

- noted by a variable $\langle X \rangle$, Y, or $\langle X_1 \rangle$, or X_1^1 , or p, q,...
- $X_i^j(c) = c_i^j$ (e.g. $q(\langle p, q, r \rangle) = q$).

Successor (on a circularly ordered C_i):

- noted X_i ++ or $(X_i \oplus 1)$ or X_i !
- X_i^j ++(c) = successor(c_i^j).

• Diffusion / Synchronisation (on C_i)

noted C_i.All or S_{Ci}

•
$$C_i.All(c) = \sum_{x \in C_i} x$$

Conclusion

At this stage:

- you know the formal syntax of Symmetric Nets
- the enabling conditions
- their firing rule

Conclusion

At this stage:

- you know the formal syntax of Symmetric Nets
- the enabling conditions
- their firing rule

Let's go for a detailed example (next sequence)

Modelling with Symmetric Nets
Introduction

You now know about Symmetric Nets:

- the formal syntax
- the enabling conditions
- their firing rule

Introduction

You now know about Symmetric Nets:

- the formal syntax
- the enabling conditions
- their firing rule

Let's go for a detailed example

- CC BY-N CC 2015
- n_1 trains distributed on a circular track, decomposed into n_2 sections.
- For security reasons, a train can enter a section only if this section and the next one are free.

• Colour Domains:

- $C_1 = \{tr_1, \ldots, tr_{n_1}\}$
- $C_2 = \{sc_1, \ldots, sc_{n_2}\}$

The architecture:

- The system state is given by a set of associations $\langle train nb , section nb \rangle$. $\rightarrow place Tr_Sc$
- A free section is a resource that allows for a train to move.
 → place Sc_Avail
- A transition representing the progress of a train.

Tr_Sc $C_1 \times C_2$ $\langle t, s \rangle$ $C_1 \times C_2$ $\langle s++ \rangle$ t + <((s++)++> C_2 Sc_Avail

Tr_Sc $C_1 \times C_2$ $\langle t, s \rangle$ $\langle t, s++ \rangle$ $C_1 \times C_2$ $\langle s \rangle$ (S++) ((s++)++) ((s++)++) C_2 Sc_Avail

N-VB OC

Conclusion

At this stage:

- you know how to model using Symmetric Nets
- you have seen a comprehensive detailed example

Conclusion

At this stage:

- you know how to model using Symmetric Nets
- you have seen a comprehensive detailed example

Let's see the Reachability Graph for analysis (next sequence)

The Reachability Graph for SN Analysis

Introduction

You have seen:

- how to model using Symmetric Nets
- a comprehensive detailed example

Introduction

You have seen:

- how to model using Symmetric Nets
- a comprehensive detailed example

Let's see the Reachability Graph for analysis

Analysis of SNs

Does a model conform to the specification?

- Possibility of answers thanks to:
 - Linear invariants.
 - The reduction theory.
 - The construction of the reachability graph (when the system is finite!)
- Try to take benefits from the structure of the model induced by the colour functions.

Reachability Graph (RG) Construction Algorithm

RG Construction($N = \langle P, T, C, W^{-}, W^{+}, M_{0} \rangle$) $RG.Q = \{M_0\}; RG.\delta = \emptyset;$ $RG.q_0 = M_0$; States = { M_o }: While (States $\neq \emptyset$) { s = pick a state in States; States = States $\setminus \{s\}$; for each $t \in T, c \in C(t)$ { if (s(t,c)) { s(t,c), ns;if $(ns \notin RG.Q)$ { $RG.Q = RG.Q \cup \{ns\};$ States = States \cup {*ns*}; $RG.\delta = RG.\delta \cup \{(s, ns)\};$ $RG.\lambda(s, ns) = (t, c);$

return RG;

Example of RG construction

To operate such verification, we need:

A representation of the behaviour of the system.

To operate such verification, we need:

A representation of the behaviour of the system.
 → Kripke structure: in our case, the RG.

To operate such verification, we need:

- A representation of the behaviour of the system.
 - \rightarrow Kripke structure: in our case, the RG.
 - → State-based propositions: proposition p(c), where $c \in C(p)$, is true in a state of the RG *iff* place *p* is marked by colour *c*.

To operate such verification, we need:

- A representation of the behaviour of the system.
 - \rightarrow Kripke structure: in our case, the RG.
 - → State-based propositions: proposition p(c), where $c \in C(p)$, is true in a state of the RG *iff* place *p* is marked by colour *c*.
 - → Event-based propositions: proposition t(c), where $c \in C(t)$, is true in a state of the RG *iff* transition t is enabled for colour c.

To operate such verification, we need:

- A representation of the behaviour of the system.
 - \rightarrow Kripke structure: in our case, the RG.
 - → State-based propositions: proposition p(c), where $c \in C(p)$, is true in a state of the RG *iff* place *p* is marked by colour *c*.
 - → Event-based propositions: proposition t(c), where $c \in C(t)$, is true in a state of the RG *iff* transition t is enabled for colour c.

A representation of the specification (property) to be checked.

To operate such verification, we need:

- A representation of the behaviour of the system.
 - \rightarrow Kripke structure: in our case, the RG.
 - → State-based propositions: proposition p(c), where $c \in C(p)$, is true in a state of the RG *iff* place *p* is marked by colour *c*.
 - → Event-based propositions: proposition t(c), where $c \in C(t)$, is true in a state of the RG *iff* transition t is enabled for colour c.
- A representation of the specification (property) to be checked.
 → Reachability properties: e.g. for all states of RG, p(c)∧!p(c₁); for all states of RG, there exists t ∈ T, c ∈ C(t), t(c).

To operate such verification, we need:

- A representation of the behaviour of the system.
 - \rightarrow Kripke structure: in our case, the RG.
 - → State-based propositions: proposition p(c), where $c \in C(p)$, is true in a state of the RG *iff* place *p* is marked by colour *c*.
 - → Event-based propositions: proposition t(c), where $c \in C(t)$, is true in a state of the RG *iff* transition t is enabled for colour c.
- A representation of the specification (property) to be checked.
 - → **Reachability properties:** e.g. for all states of RG, $p(c) \land !p(c_1)$; for all states of RG, there exists $t \in T$, $c \in C(t)$, t(c).
 - → Temporal properties: two particular semantics are generally admitted:
 - the linear time semantics (an execution of the system is an infinite path in the Kripke structure);
 - the branching time semantics (the execution of the system is represented by the underlying infinite tree).

Conclusion

At this stage:

- you know how to build a Reachability Graph
- you have seen how it can be used for system analysis

Conclusion

At this stage:

- you know how to build a Reachability Graph
- you have seen how it can be used for system analysis

Let's see two logics to express properties (next two sequences)

LTL Properties

O BY.

2015

Introduction

- how to build a Reachability Graph
- how it can be used for system analysis

Introduction

Now you know:

- how to build a Reachability Graph
- how it can be used for system analysis

Let's see LTL logics to express properties

The linear time semantics

Logics to express linear time properties

- LTL = Linear-time Temporal Logic
- Syntax: let AP be a set of atomic propositions.
 - $a \in AP$ is an LTL formula.
 - If ϕ_1 and ϕ_2 are LTL formulae then so are
 - $\neg \phi_1 \qquad \phi_1 \land \phi_2 \qquad X \phi_2 \qquad \phi_1 \cup \phi_2$ where X stands for "next" and U for "until"
 - ► Two usual shortcuts: $F\phi \equiv true \cup \phi$ and $G\phi \equiv \neg F \neg \phi$ where F stand for "future" and G for "globally".

Logics to express linear time properties

- LTL = Linear-time Temporal Logic
- Syntax: let AP be a set of atomic propositions.
 - $a \in AP$ is an LTL formula.
 - If ϕ_1 and ϕ_2 are LTL formulae then so are
 - $\neg \phi_1$ $\phi_1 \land \phi_2$ X ϕ_2 $\phi_1 \cup \phi_2$ where X stands for "next" and U for "until"
 - ► Two usual shortcuts: $F\phi \equiv true \cup \phi$ and $G\phi \equiv \neg F \neg \phi$ where F stand for "future" and G for "globally".
- With each LTL formula φ, we associate a language L(φ) of ω-words over 2^{AP} (i.e. we have L(φ) ⊆ (2^{AP})^ω). Let σ ∈ (2^{AP})^ω:

$\sigma \in \mathcal{L}(a)$	$\Leftrightarrow a \in \sigma(0)$
$\sigma \in \mathcal{L}(\neg \phi)$	$\Leftrightarrow \neg \sigma \in \mathcal{L}(\phi)$
$\sigma \in \mathcal{L}(\phi_1 \wedge \phi_2)$	$\Leftrightarrow \sigma \in \mathcal{L}(\phi_1) \cap \mathcal{L}(\phi_2)$
$\sigma \in \mathcal{L}(X\phi)$	$\Leftrightarrow \sigma(1) \in \mathcal{L}(\phi)$
$\sigma \in \mathcal{L}(\phi_1 \cup \phi_2)$	$\Leftrightarrow \exists i: \sigma(i) \in \mathcal{L}(\phi_2) \land \forall k < i, \sigma(k) \in \mathcal{L}(\phi_1)$

Illustration of the LTL semantics

Examples of LTL formulae

- $C = \{C_1, C_2, C_3\}$ Idle C.All $\langle X \rangle$ $\langle X$ Waiting $\langle X$ $\langle X \rangle$ Busy Res $\langle X$ t₃
- Atomic propositions:
 - p(c), where, $p \in P \setminus \{Res\}$ and $c \in C$
 - t(c), where, $t \in T$ and $c \in C$
- $G_{\neg}(Busy(c_1) \land Busy(c_2))$: it always holds that c_1 and c_2 do not appear together in critical section (place *Busy*).
- G(Waiting(c₃) ⇒ F(Busy(c₃))): whenever c₃ requests to enter its critical section, it will eventually succeed.

Conclusion

At this stage, you know:

- how to build a Reachability Graph
- how it can be used for system analysis
- LTL logics to express properties

Conclusion

At this stage, you know:

- how to build a Reachability Graph
- how it can be used for system analysis
- LTL logics to express properties

Let's see CTL logics to express additional properties (next sequence)

CTL Properties

O BY.

2015

Introduction

Now you know:

- how to build a Reachability Graph
- how it can be used for system analysis
- LTL logics to express properties

Introduction

Now you know:

- how to build a Reachability Graph
- how it can be used for system analysis
- LTL logics to express properties

Let's see CTL logics to express additional properties

The branching time semantics

CC 2015 Petrucci (LRDE. LIP6 & LIPN S. Baarir, F. Kordon, ets 2015

Logics to express branching time properties

- CTL = Computational Tree Logic.
- Syntax: let AP be a set of atomic propositions.
 - $a \in AP$ is a CTL formula.
 - If ϕ_1 and ϕ_2 are CTL formulae then so are

 $\neg \phi_1$ $\phi_1 \land \phi_2$ EX ϕ_1 EG ϕ_1 E $\phi_1 \cup \phi_2$ where X stands for "next", G for "globally", E for "exists" and U for "until".

Logics to express branching time properties

- CTL = Computational Tree Logic.
- Syntax: let AP be a set of atomic propositions.
 - $a \in AP$ is a CTL formula.
 - If ϕ_1 and ϕ_2 are CTL formulae then so are

 $\neg \phi_1$ $\phi_1 \land \phi_2$ EX ϕ_1 EG ϕ_1 E $\phi_1 \cup \phi_2$ where X stands for "next", G for "globally", E for "exists" and U for "until".

• Let $K = \langle S, l, \rightarrow, s_0 \rangle$ be a Kripke structure. With each CTL formula ϕ , we associate a set $S_k(\phi) \subseteq S$ of states, such that:

$$\begin{split} s \in S_k(a) & \Leftrightarrow a \in l(s) \\ s \in S_k(\neg \phi) & \Leftrightarrow s \notin S_k(\phi) \\ s \in S_k(\phi_1 \land \phi_2) & \Leftrightarrow s \in S_k(\phi_1) \cap S_k(\phi_2) \\ s \in S_k(EX\phi) & \Leftrightarrow \exists s' : s \to s' \land s' \in S_k(\phi) \\ s \in S_k(EG\phi) & \Leftrightarrow \exists a \operatorname{run} \tau \text{ of } K \text{ s.t. } \tau(0) = s \land \forall i \ge 0, \tau(i) \in S_k(\phi) \\ s \in S_k(E\phi_1 \cup \phi_2) & \Leftrightarrow \exists a \operatorname{run} \tau \text{ of } K \text{ s.t. } \tau(0) = s \land \exists i, \tau(i) \in S_k(\phi_2) \land \\ \forall k < i, \tau(k) \in S_k(\phi_1) \end{split}$$

Logics to express branching time properties

- CTL = Computational Tree Logic.
- Syntax: let AP be a set of atomic propositions.
 - $a \in AP$ is a CTL formula.
 - If ϕ_1 and ϕ_2 are CTL formulae then so are

 $\neg \phi_1$ $\phi_1 \land \phi_2$ EX ϕ_1 EG ϕ_1 E $\phi_1 \cup \phi_2$ where X stands for "next", G for "globally", E for "exists" and U for "until".

• Let $K = \langle S, l, \rightarrow, s_0 \rangle$ be a Kripke structure. With each CTL formula ϕ , we associate a set $S_k(\phi) \subseteq S$ of states, such that:

$$\begin{split} s \in S_k(a) & \Leftrightarrow a \in l(s) \\ s \in S_k(\neg \phi) & \Leftrightarrow s \notin S_k(\phi) \\ s \in S_k(\phi_1 \land \phi_2) & \Leftrightarrow s \in S_k(\phi_1) \cap S_k(\phi_2) \\ s \in S_k(\mathsf{EX}\phi) & \Leftrightarrow \exists s' : s \to s' \land s' \in S_k(\phi) \\ s \in S_k(\mathsf{EG}\phi) & \Leftrightarrow \exists a \operatorname{run} \tau \text{ of } \mathsf{K} \text{ s.t. } \tau(0) = s \land \forall i \ge 0, \tau(i) \in S_k(\phi) \\ s \in S_k(\mathsf{E}\phi_1 \cup \phi_2) & \Leftrightarrow \exists a \operatorname{run} \tau \text{ of } \mathsf{K} \text{ s.t. } \tau(0) = s \land \exists i, \tau(i) \in S_k(\phi_2) \land \\ \forall k < i, \tau(k) \in S_k(\phi_1) \end{split}$$

• K satisfies a CTL formula ϕ iff $s_0 \in S_k(\phi)$

Illustration of the CTL semantics (1/8)

Illustration of the CTL semantics (2/8)

Illustration of the CTL semantics (3/8)

Illustration of the CTL semantics (4/8)

Illustration of the CTL semantics (5/8)

Illustration of the CTL semantics (6/8)

Illustration of the CTL semantics (7/8)

Illustration of the CTL semantics (8/8)

Examples of CTL formulae

- Atomic propositions:
 - p(c), where, $p \in P \setminus \{Res\}$ and $c \in C$
 - t(c), where, $t \in T$ and $c \in C$
- AG \neg (Busy(c₁) \land Busy(c₂)): it always holds that c₁ and c₂ do not appear together in critical section (place Busy).
- AG(Waiting(c₃) ⇒ AF(Busy(c₃))): whenever c₃ requests to enter its critical section, it will eventually succeed.
- AG(EF(Idle(c₁) ∧ Idle(c₂) ∧ Idle(c₃))): whatever the system state, it has the possibility to return to the initial state.

Conclusion

At this stage, you know:

- Symmetric Nets with their syntax and semantics
- how to build a Reachability Graph
- how it can be used for system analysis
- LTL and CTL logics to express properties

Conclusion

At this stage, you know:

- Symmetric Nets with their syntax and semantics
- how to build a Reachability Graph
- how it can be used for system analysis
- LTL and CTL logics to express properties

Let's put into practice using the CosyVerif platform!

