
Petri Nets Tutorial, from Symmetric Nets to
Symmetric Nets with Bags

(session 1)

Souheib Baarir, Fabrice Kordon, Laure Petrucci

Souheib.Baarir@lrde.epita.fr LRDE, Epita
Fabrice.Kordon@lip6.fr LIP6, Université Pierre & Marie Curie

Laure.Petrucci@lipn.univ-paris13.fr LIPN, Université Paris 13

June 23th, 2015

1 / 60



Thanks

Thanks for their support to...

project ImpRo/ANR-2010-BLAN-0317
project NEOPPOD (FEDER Île-de-France/System@tic-free software)

Inria for an engineer
LIP6/Move, LIPN, LDRE, LSV

and of course...

All the developers of CosyVerif (tools and platform)

2 / 60



Outline

Introduction
I Petri net classes.
I Symmetric Nets (SN).

Syntax and semantics of SN
I Syntax.
I Semantics (Firing rule).
I Reachability Graph construction.

SN and the verification of distributed systems
I Atomic propositions.
I Reachability properties.
I Temporal properties.

3 / 60



4 / 60



Introduction

5 / 60



First of all...

You know about Place/Transition Petri nets:

about their structure

about their marking

about their reachability graph

Nice notation to model and analyse distributed systems. . .

. . . but . . .

. . . complex to handle

need for parametrisation

need to represent data

need for a compact and easy-to-read notation

Let’s have a deeper look on this now

6 / 60



First of all...

You know about Place/Transition Petri nets:

about their structure

about their marking

about their reachability graph

Nice notation to model and analyse distributed systems. . .

. . . but . . .

. . . complex to handle

need for parametrisation

need to represent data

need for a compact and easy-to-read notation

Let’s have a deeper look on this now

6 / 60



First of all...

You know about Place/Transition Petri nets:

about their structure

about their marking

about their reachability graph

Nice notation to model and analyse distributed systems. . .

. . . but . . .

. . . complex to handle

need for parametrisation

need to represent data

need for a compact and easy-to-read notation

Let’s have a deeper look on this now

6 / 60



Petri net classes.1

Level 1: PNs characterised by places which can represent boolean values,
I i.e. a place is marked by at most one unstructured token,
I Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.

Level 2: PNs characterised by places which can represent integer values,
I i.e. a place is marked by a number of unstructured tokens,
I Place/Transition (P/T) Nets,. . .

Level 3: PNs characterised by places which can represent high-level
values,

I i.e. a place is marked by a multiset of structured tokens.
I Coloured Petri Nets, Algebraic Petri Nets, Symmetric Nets (a.k.a. Well-Formed

Nets),. . .

1Made by Monika Trompedeller in 1995 (based on a survey by L. Bernardinello and F. De Cindio
from 1992)

7 / 60



Petri net classes.1

Level 1: PNs characterised by places which can represent boolean values,
I i.e. a place is marked by at most one unstructured token,
I Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.

Level 2: PNs characterised by places which can represent integer values,
I i.e. a place is marked by a number of unstructured tokens,
I Place/Transition (P/T) Nets,. . .

Level 3: PNs characterised by places which can represent high-level
values,

I i.e. a place is marked by a multiset of structured tokens.
I Coloured Petri Nets, Algebraic Petri Nets, Symmetric Nets (a.k.a. Well-Formed

Nets),. . .

1Made by Monika Trompedeller in 1995 (based on a survey by L. Bernardinello and F. De Cindio
from 1992)

7 / 60



Petri net classes.1

Level 1: PNs characterised by places which can represent boolean values,
I i.e. a place is marked by at most one unstructured token,
I Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.

Level 2: PNs characterised by places which can represent integer values,
I i.e. a place is marked by a number of unstructured tokens,
I Place/Transition (P/T) Nets,. . .

Level 3: PNs characterised by places which can represent high-level
values,

I i.e. a place is marked by a multiset of structured tokens.
I Coloured Petri Nets, Algebraic Petri Nets, Symmetric Nets (a.k.a. Well-Formed

Nets),. . .

1Made by Monika Trompedeller in 1995 (based on a survey by L. Bernardinello and F. De Cindio
from 1992)

7 / 60



Petri net classes.1

Level 1: PNs characterised by places which can represent boolean values,
I i.e. a place is marked by at most one unstructured token,
I Condition/Event (C/E) Systems, Elementary Net (EN) Systems, 1-safe Systems.

Level 2: PNs characterised by places which can represent integer values,
I i.e. a place is marked by a number of unstructured tokens,
I Place/Transition (P/T) Nets,. . .

Level 3: PNs characterised by places which can represent high-level
values,

I i.e. a place is marked by a multiset of structured tokens.
I Coloured Petri Nets, Algebraic Petri Nets, Symmetric Nets (a.k.a. Well-Formed

Nets),. . .

1Made by Monika Trompedeller in 1995 (based on a survey by L. Bernardinello and F. De Cindio
from 1992)

7 / 60



Symmetric Nets (SN): an informal definition

Each place p is characterised by a
colour domain C(p).

A token of p is an element of C(p).

Each transition t is characterised by
a colour domain C(t).

The colour domain of a transition
characterises the signature of the
transition.

The colour functions on arcs
determine the instances of tokens
that are consumed and produced
during the firing of a transition.

p1 p2

p3

t

〈f1〉 〈f2〉

〈f3〉

8 / 60



Symmetric Nets (SN): an example

Processes of class Cl = {p1, ..., pn},
in mutual exclusion on a untyped
resource.

A process is either in an Idle state,
or in a Waiting state, or in a Busy
state.

To move from the Waiting state to
the Busy state, a process needs the
resource.

Idle

Waiting

t1
〈f〉

〈f〉

Busy Res

t3

〈f〉

t2
〈f〉

〈f〉

〈f〉

C(Idle) = C(Waiting) = C(Busy) = Cl
C(Res) = {ε}
C(t1) = C(t2) = C(t3) = Cl

f : Cl → Cl
M0(Idle) =Cl.All

9 / 60



Symmetric Nets (SN): another example

n1 processes of class Clp = {p1, ..., pn1 }, in
mutual exclusion on n2 resources of class
Clr = {r1, ..., rn2 }.

To move from Waiting to Busy, a process pi

needs a resource rj .

C(Idle) = C(Waiting) = Clp
C(Res) = Clr
C(Busy) = Clp × Clr

C(t1) = Clp
C(t2) = C(t3) = Clp × Clr

f : Clp × Clr → Clp
g : Clp × Clr → Clr

M0(Idle) = Clp .All ; M0(Res) = Clr .All

Idle

Waiting

t1
〈IdClp 〉

〈IdClp 〉

Busy Res

t3

〈IdClp×Clr 〉

t2
〈f〉

〈IdClp×Clr 〉

〈g〉

〈g〉
〈f〉

10 / 60



Conclusion

At this stage:

you have an idea on Coloured Nets in general . . .

. . . and Symmetric Nets in particular

Let’s go for a more precise semantics (next sequence)

11 / 60



Conclusion

At this stage:

you have an idea on Coloured Nets in general . . .

. . . and Symmetric Nets in particular

Let’s go for a more precise semantics (next sequence)

11 / 60



12 / 60



Syntax and semantics of SN

13 / 60



Introduction

You now:

have an idea on Coloured Nets in general . . .

. . . and Symmetric Nets in particular

Let’s go for a more precise semantics

14 / 60



Introduction

You now:

have an idea on Coloured Nets in general . . .

. . . and Symmetric Nets in particular

Let’s go for a more precise semantics

14 / 60



Recall: multisets (Bags)

Let A be a non empty finite set.

A bag a on A is a function:
a : A→ N
x→ a(x)

a(x) denotes the number of occurrences of x in a.

We note: a =
∑

x∈A a(x).x

Bag(A) denotes the set of multisets on A.

Consider the following functions:
f : Bag(C1)→ Bag(C2)
g : Bag(C ′1)→ Bag(C ′2)
h : Bag(C)→ Bag(C1)

then
〈f , g〉 : Bag(C1) × Bag(C ′1)→ Bag(C2) × Bag(C ′2)

(x, y)→ 〈f(x), g(y)〉
and

f ◦ h : Bag(C)→ Bag(C2)
x → f(h(x))

15 / 60



SN definition: syntax

A Symmetric Net is a tuple 〈P,T ,C ,W−,W+,M0〉 where:
I P is the set of places, T is the set transitions (P ∩ T = ∅, P ∪ T , ∅).
I C defines for each place and transition a colour domain.
I W− (= Pre) (resp. W+ = Post), indexed on P × T , is backward (resp. forward)

incidence matrix of the net.
I W−(p, t) and W+(p, t) are linear colour functions defined from C(t) to

Bag(C(p)).
I M0 is the initial marking of the net such that M0(p) ∈ Bag(C(p)).
I Transitions may be guarded by functions: C(t)→ {0, 1}.
I Colour domains are generally cartesian products.

16 / 60



SN definition: semantics

Let N = 〈P,T ,C ,W−,W+,M0〉 be a SN:

I A marking M of N is a vector: M(p) ∈ Bag(C(p)).

I A transition t is enabled for an instance ct ∈ C(t) and a marking M iff :
F either t is not guarded, or the guard evaluates to true (for ct ), and
F ∀p ∈ P,M(p) ≥ W−(p, t)(ct )

I M′, the marking reached after the firing of t for an instance ct , from the marking
M is defined by:

∀p ∈ P,M′(p) = M(p) −W−(p, t)(ct) + W+(p, t)(ct)

We note:

M[(t , ct)〉M′ or M
(t ,ct )
−−−→ M′

17 / 60



Example of firing in SN (1/2)

Let c1 ∈ C1, c2 ∈ C2 and
m0 = p1(c1) + p2(c2)

t is enabled for (c1, c2) iff :
1 p1 is marked by a token of colour 〈X1〉
2 p2 is marked by a token of colour 〈X2〉

If t is fired for (c1, c2) then:
1 A token of colour 〈X1〉 is removed from p1
2 A token of colour 〈X2〉 is removed from p2
3 A token of colour 〈c1, c2〉 is produced in

p3 : 〈X1,X2〉(c1, c2) = 〈c1, c2〉

c1

p1

C1

c2

p2

C2

p3

C1 × C2

t

〈X1〉 〈X2〉

〈X1,X2〉

C1 × C2

Xi : C1 × C2 → Ci

Xi(c1, c2) = ci

18 / 60



Example of firing in SN (2/2)

a + c

p1

C1 = {a, b , c}

C1

α

p2

C2 = {α, β}

C2

〈c, β〉

p3

C1 × C2C1 × C2C1 × C2

m = p1(a + c) + p2(α) + p3(〈c, β〉)

t

〈X1〉
〈X2〉

〈X1,X2〉

C1 × C2C1 × C2
(t ,〈a,α〉)
−−−−−−→

c

p1

C1

p2

C2

〈c, β〉
+
〈a, α〉

p3

C1 × C2

t

〈X1〉 〈X2〉

〈X1,X2〉

C1 × C2

m′ = p1(c) + p3(〈c, β〉+ 〈a, α〉)
19 / 60



Basic colour functions

Let:

I C =
n∏

i=1

ei∏
j=1

Ci , and

I c = 〈c1
1 , c

2
1 , ..., c

e1
1 , ..., c

1
n , c

2
n , ..., c

en
n 〉 ∈ C

A colour domain constructed on
top of a Cartesian product of colour

classes, in which Ci appears ei times.

Identity/Projection:
I noted by a variable 〈X〉, Y , or 〈X1〉, or X1

1 , or p, q,...
I X j

i (c) = c j
i (e.g. q(〈p, q, r〉) = q).

Successor (on a circularly ordered Ci):
I noted Xi++ or (Xi ⊕ 1) or Xi!
I X j

i ++(c) = successor(c j
i ).

The successor relation is defined by the
enumeration order of elements in class Ci .

Diffusion / Synchronisation (on Ci)
I noted Ci .All or SCi
I Ci .All(c) =

∑
x∈Ci

x

20 / 60



Basic colour functions

Let:

I C =
n∏

i=1

ei∏
j=1

Ci , and

I c = 〈c1
1 , c

2
1 , ..., c

e1
1 , ..., c

1
n , c

2
n , ..., c

en
n 〉 ∈ C

A colour domain constructed on
top of a Cartesian product of colour

classes, in which Ci appears ei times.

Identity/Projection:
I noted by a variable 〈X〉, Y , or 〈X1〉, or X1

1 , or p, q,...
I X j

i (c) = c j
i (e.g. q(〈p, q, r〉) = q).

Successor (on a circularly ordered Ci):
I noted Xi++ or (Xi ⊕ 1) or Xi!
I X j

i ++(c) = successor(c j
i ).

The successor relation is defined by the
enumeration order of elements in class Ci .

Diffusion / Synchronisation (on Ci)
I noted Ci .All or SCi
I Ci .All(c) =

∑
x∈Ci

x

20 / 60



Basic colour functions

Let:

I C =
n∏

i=1

ei∏
j=1

Ci , and

I c = 〈c1
1 , c

2
1 , ..., c

e1
1 , ..., c

1
n , c

2
n , ..., c

en
n 〉 ∈ C

A colour domain constructed on
top of a Cartesian product of colour

classes, in which Ci appears ei times.

Identity/Projection:
I noted by a variable 〈X〉, Y , or 〈X1〉, or X1

1 , or p, q,...
I X j

i (c) = c j
i (e.g. q(〈p, q, r〉) = q).

Successor (on a circularly ordered Ci):
I noted Xi++ or (Xi ⊕ 1) or Xi!
I X j

i ++(c) = successor(c j
i ).

The successor relation is defined by the
enumeration order of elements in class Ci .

Diffusion / Synchronisation (on Ci)
I noted Ci .All or SCi
I Ci .All(c) =

∑
x∈Ci

x

20 / 60



Basic colour functions

Let:

I C =
n∏

i=1

ei∏
j=1

Ci , and

I c = 〈c1
1 , c

2
1 , ..., c

e1
1 , ..., c

1
n , c

2
n , ..., c

en
n 〉 ∈ C

A colour domain constructed on
top of a Cartesian product of colour

classes, in which Ci appears ei times.

Identity/Projection:
I noted by a variable 〈X〉, Y , or 〈X1〉, or X1

1 , or p, q,...
I X j

i (c) = c j
i (e.g. q(〈p, q, r〉) = q).

Successor (on a circularly ordered Ci):
I noted Xi++ or (Xi ⊕ 1) or Xi!
I X j

i ++(c) = successor(c j
i ).

The successor relation is defined by the
enumeration order of elements in class Ci .

Diffusion / Synchronisation (on Ci)
I noted Ci .All or SCi
I Ci .All(c) =

∑
x∈Ci

x

20 / 60



Basic colour functions

Let:

I C =
n∏

i=1

ei∏
j=1

Ci , and

I c = 〈c1
1 , c

2
1 , ..., c

e1
1 , ..., c

1
n , c

2
n , ..., c

en
n 〉 ∈ C

A colour domain constructed on
top of a Cartesian product of colour

classes, in which Ci appears ei times.

Identity/Projection:
I noted by a variable 〈X〉, Y , or 〈X1〉, or X1

1 , or p, q,...
I X j

i (c) = c j
i (e.g. q(〈p, q, r〉) = q).

Successor (on a circularly ordered Ci):
I noted Xi++ or (Xi ⊕ 1) or Xi!
I X j

i ++(c) = successor(c j
i ).

The successor relation is defined by the
enumeration order of elements in class Ci .

Diffusion / Synchronisation (on Ci)
I noted Ci .All or SCi
I Ci .All(c) =

∑
x∈Ci

x

20 / 60



Basic colour functions

Let:

I C =
n∏

i=1

ei∏
j=1

Ci , and

I c = 〈c1
1 , c

2
1 , ..., c

e1
1 , ..., c

1
n , c

2
n , ..., c

en
n 〉 ∈ C

A colour domain constructed on
top of a Cartesian product of colour

classes, in which Ci appears ei times.

Identity/Projection:
I noted by a variable 〈X〉, Y , or 〈X1〉, or X1

1 , or p, q,...
I X j

i (c) = c j
i (e.g. q(〈p, q, r〉) = q).

Successor (on a circularly ordered Ci):
I noted Xi++ or (Xi ⊕ 1) or Xi!
I X j

i ++(c) = successor(c j
i ).

The successor relation is defined by the
enumeration order of elements in class Ci .

Diffusion / Synchronisation (on Ci)
I noted Ci .All or SCi
I Ci .All(c) =

∑
x∈Ci

x

20 / 60



Conclusion

At this stage:

you know the formal syntax of Symmetric Nets

the enabling conditions

their firing rule

Let’s go for a detailed example (next sequence)

21 / 60



Conclusion

At this stage:

you know the formal syntax of Symmetric Nets

the enabling conditions

their firing rule

Let’s go for a detailed example (next sequence)

21 / 60



22 / 60



Modelling with Symmetric Nets

23 / 60



Introduction

You now know about Symmetric Nets:

the formal syntax

the enabling conditions

their firing rule

Let’s go for a detailed example

24 / 60



Introduction

You now know about Symmetric Nets:

the formal syntax

the enabling conditions

their firing rule

Let’s go for a detailed example

24 / 60



Modelling example: the Trains Problem (1/3)

n1 trains distributed on a circular track, decomposed into n2 sections.

For security reasons, a train can enter a section only if this section and the
next one are free.

25 / 60



Modelling example: the Trains Problem (2/3)

Colour Domains:
I C1 = {tr1, . . . , trn1 }

I C2 = {sc1, . . . , scn2 }

The architecture:
I The system state is given by a set of associations 〈train nb , section nb〉.
→ place Tr_Sc

I A free section is a resource that allows for a train to move.
→ place Sc_Avail

I A transition representing the progress of a train.

26 / 60



Modelling example: the Trains Problem (3/3)

Tr_Sc
C1 × C2

Sc_Avail
C2

t

t

〈t , s〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

C1 × C2

Tr_Sc
C1 × C2

Sc_Avail
C2

[y = s++]

〈t , s〉

〈y〉
+
〈y++〉

〈s〉
+
〈y++〉

〈t , y〉

C1 × C2

27 / 60



Modelling example: the Trains Problem (3/3)

Tr_Sc
C1 × C2

Sc_Avail
C2

t

t

〈t , s〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

C1 × C2

Tr_Sc
C1 × C2

Sc_Avail
C2

[y = s++]

〈t , s〉

〈y〉
+
〈y++〉

〈s〉
+
〈y++〉

〈t , y〉

C1 × C2

27 / 60



Modelling example: the Trains Problem (3/3)

Tr_Sc
C1 × C2

Sc_Avail
C2

t

t

〈t , s〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

C1 × C2

Tr_Sc
C1 × C2

Sc_Avail
C2

[y = s++]

〈t , s〉

〈y〉
+
〈y++〉

〈s〉
+
〈y++〉

〈t , y〉

C1 × C2

27 / 60



Modelling example: the Trains Problem (3/3)

Tr_Sc
C1 × C2

Sc_Avail
C2

t

t

〈t , s〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

C1 × C2

Tr_Sc
C1 × C2

Sc_Avail
C2

[y = s++]

〈t , s〉

〈y〉
+
〈y++〉

〈s〉
+
〈y++〉

〈t , y〉

C1 × C2

27 / 60



Modelling example: the Trains Problem (3/3)

Tr_Sc
C1 × C2

Sc_Avail
C2

t

t

〈t , s〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

C1 × C2

Tr_Sc
C1 × C2

Sc_Avail
C2

[y = s++]

〈t , s〉

〈y〉
+
〈y++〉

〈s〉
+
〈y++〉

〈t , y〉

C1 × C2

27 / 60



Modelling example: the Trains Problem (3/3)

Tr_Sc
C1 × C2

Sc_Avail
C2

t

t

〈t , s〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

t

〈t , s〉

〈s++〉
+

〈(s++)++〉

〈s〉
+

〈(s++)++〉

〈t , s++〉

C1 × C2

Tr_Sc
C1 × C2

Sc_Avail
C2

[y = s++]

〈t , s〉

〈y〉
+
〈y++〉

〈s〉
+
〈y++〉

〈t , y〉

C1 × C2

27 / 60



Conclusion

At this stage:

you know how to model using Symmetric Nets

you have seen a comprehensive detailed example

Let’s see the Reachability Graph for analysis (next sequence)

28 / 60



Conclusion

At this stage:

you know how to model using Symmetric Nets

you have seen a comprehensive detailed example

Let’s see the Reachability Graph for analysis (next sequence)

28 / 60



29 / 60



The Reachability Graph for SN
Analysis

30 / 60



Introduction

You have seen:

how to model using Symmetric Nets

a comprehensive detailed example

Let’s see the Reachability Graph for analysis

31 / 60



Introduction

You have seen:

how to model using Symmetric Nets

a comprehensive detailed example

Let’s see the Reachability Graph for analysis

31 / 60



Analysis of SNs

Does a model conform to the specification?

Possibility of answers thanks to:
I Linear invariants.
I The reduction theory.
I The construction of the reachability graph (when the system is finite!)

Try to take benefits from the structure of the model induced by the colour
functions.

32 / 60



Reachability Graph (RG) Construction Algorithm

RG_Construction(N = 〈P,T ,C ,W−,W+,M0〉)
RG.Q = {M0};RG.δ = ∅;
RG.q0 = M0;States = {Mo}:
While (States , ∅) {

s = pick a state in States ;
States = States \ {s};
for each t ∈ T , c ∈ C(t) {

if (s[(t , c)〉) {
s[(t , c)〉ns;
if (ns < RG.Q) {

RG.Q = RG.Q ∪ {ns} ;
States = States ∪ {ns};

}

RG.δ = RG.δ ∪ {(s, ns)};
RG.λ(s, ns) = (t , c);

}

}

}

return RG;
33 / 60



Example of RG construction

C .All Idle

C = {c1, c2, c3}

Waiting

t1
〈X〉

〈X〉

Busy Res

t3

〈X〉

t2
〈X〉

〈X〉

〈X〉

M0

Idle(c1 + c2 + c3)
+Res

M1

Idle(c2 + c3)
+Waiting(c1)

+Res

M2

Idle(c1 + c3)
+Waiting(c2)

+Res

M3

Idle(c1 + c2)
+Waiting(c3)

+Res

(t1, c1) (t1, c2) (t1, c3)

34 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.

→ Kripke structure: in our case, the RG.
→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a

state of the RG iff place p is marked by colour c.
→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a

state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.
→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).
→ Temporal properties: two particular semantics are generally admitted:

I the linear time semantics (an execution of the system is an infinite path in the
Kripke structure);

I the branching time semantics (the execution of the system is represented by the
underlying infinite tree).

35 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.
→ Kripke structure: in our case, the RG.

→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a
state of the RG iff place p is marked by colour c.

→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a
state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.
→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).
→ Temporal properties: two particular semantics are generally admitted:

I the linear time semantics (an execution of the system is an infinite path in the
Kripke structure);

I the branching time semantics (the execution of the system is represented by the
underlying infinite tree).

35 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.
→ Kripke structure: in our case, the RG.
→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a

state of the RG iff place p is marked by colour c.

→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a
state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.
→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).
→ Temporal properties: two particular semantics are generally admitted:

I the linear time semantics (an execution of the system is an infinite path in the
Kripke structure);

I the branching time semantics (the execution of the system is represented by the
underlying infinite tree).

35 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.
→ Kripke structure: in our case, the RG.
→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a

state of the RG iff place p is marked by colour c.
→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a

state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.
→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).
→ Temporal properties: two particular semantics are generally admitted:

I the linear time semantics (an execution of the system is an infinite path in the
Kripke structure);

I the branching time semantics (the execution of the system is represented by the
underlying infinite tree).

35 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.
→ Kripke structure: in our case, the RG.
→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a

state of the RG iff place p is marked by colour c.
→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a

state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.

→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).
→ Temporal properties: two particular semantics are generally admitted:

I the linear time semantics (an execution of the system is an infinite path in the
Kripke structure);

I the branching time semantics (the execution of the system is represented by the
underlying infinite tree).

35 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.
→ Kripke structure: in our case, the RG.
→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a

state of the RG iff place p is marked by colour c.
→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a

state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.
→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).

→ Temporal properties: two particular semantics are generally admitted:
I the linear time semantics (an execution of the system is an infinite path in the

Kripke structure);
I the branching time semantics (the execution of the system is represented by the

underlying infinite tree).

35 / 60



More advanced verification of finite systems

To operate such verification, we need:

1 A representation of the behaviour of the system.
→ Kripke structure: in our case, the RG.
→ State-based propositions: proposition p(c), where c ∈ C(p), is true in a

state of the RG iff place p is marked by colour c.
→ Event-based propositions: proposition t(c), where c ∈ C(t), is true in a

state of the RG iff transition t is enabled for colour c.

2 A representation of the specification (property) to be checked.
→ Reachability properties: e.g. for all states of RG, p(c)∧!p(c1); for all
states of RG, there exists t ∈ T , c ∈ C(t), t(c).
→ Temporal properties: two particular semantics are generally admitted:

I the linear time semantics (an execution of the system is an infinite path in the
Kripke structure);

I the branching time semantics (the execution of the system is represented by the
underlying infinite tree).

35 / 60



Conclusion

At this stage:

you know how to build a Reachability Graph

you have seen how it can be used for system analysis

Let’s see two logics to express properties (next two sequences)

36 / 60



Conclusion

At this stage:

you know how to build a Reachability Graph

you have seen how it can be used for system analysis

Let’s see two logics to express properties (next two sequences)

36 / 60



37 / 60



LTL Properties

38 / 60



Introduction

Now you know:

how to build a Reachability Graph

how it can be used for system analysis

Let’s see LTL logics to express properties

39 / 60



Introduction

Now you know:

how to build a Reachability Graph

how it can be used for system analysis

Let’s see LTL logics to express properties

39 / 60



The linear time semantics

s0

s1

s3

s0

s1

s3

s0

s2

s5

s0

s2

s5

s0

s1

s3

s0

s2

s5

. . .

40 / 60



Logics to express linear time properties

LTL = Linear-time Temporal Logic
Syntax: let AP be a set of atomic propositions.

I a ∈ AP is an LTL formula.
I If φ1 and φ2 are LTL formulae then so are
¬φ1 φ1 ∧ φ2 X φ2 φ1 U φ2

where X stands for “next” and U for “until”
I Two usual shortcuts: Fφ ≡ true U φ and Gφ ≡ ¬F¬φ where F stand for “future”

and G for “globally”.

With each LTL formula φ, we associate a language L(φ) of ω-words over 2AP

(i.e. we have L(φ) ⊆ (2AP)ω). Let σ ∈ (2AP)ω:

σ ∈ L(a) ⇔ a ∈ σ(0)

σ ∈ L(¬φ) ⇔ ¬σ ∈ L(φ)

σ ∈ L(φ1 ∧ φ2)⇔ σ ∈ L(φ1) ∩ L(φ2)

σ ∈ L(Xφ) ⇔ σ(1) ∈ L(φ)

σ ∈ L(φ1 U φ2) ⇔ ∃i : σ(i) ∈ L(φ2) ∧ ∀k < i, σ(k) ∈ L(φ1)

41 / 60



Logics to express linear time properties

LTL = Linear-time Temporal Logic
Syntax: let AP be a set of atomic propositions.

I a ∈ AP is an LTL formula.
I If φ1 and φ2 are LTL formulae then so are
¬φ1 φ1 ∧ φ2 X φ2 φ1 U φ2

where X stands for “next” and U for “until”
I Two usual shortcuts: Fφ ≡ true U φ and Gφ ≡ ¬F¬φ where F stand for “future”

and G for “globally”.

With each LTL formula φ, we associate a language L(φ) of ω-words over 2AP

(i.e. we have L(φ) ⊆ (2AP)ω). Let σ ∈ (2AP)ω:

σ ∈ L(a) ⇔ a ∈ σ(0)

σ ∈ L(¬φ) ⇔ ¬σ ∈ L(φ)

σ ∈ L(φ1 ∧ φ2)⇔ σ ∈ L(φ1) ∩ L(φ2)

σ ∈ L(Xφ) ⇔ σ(1) ∈ L(φ)

σ ∈ L(φ1 U φ2) ⇔ ∃i : σ(i) ∈ L(φ2) ∧ ∀k < i, σ(k) ∈ L(φ1)

41 / 60



Illustration of the LTL semantics

a

Xφ

φ1 U φ2

Fφ

Gφ

42 / 60



Examples of LTL formulae

C .All Idle

C = {c1, c2, c3}

Waiting

t1
〈X〉

〈X〉

Busy Res

t3

〈X〉

t2
〈X〉

〈X〉

〈X〉
Atomic propositions:

I p(c), where, p ∈ P \ {Res} and c ∈ C
I t(c), where, t ∈ T and c ∈ C

G¬(Busy(c1) ∧ Busy(c2)): it always holds
that c1 and c2 do not appear together in
critical section (place Busy).

G(Waiting(c3)⇒ F(Busy(c3))): whenever
c3 requests to enter its critical section, it will
eventually succeed.

43 / 60



Conclusion

At this stage, you know:

how to build a Reachability Graph

how it can be used for system analysis

LTL logics to express properties

Let’s see CTL logics to express additional properties (next sequence)

44 / 60



Conclusion

At this stage, you know:

how to build a Reachability Graph

how it can be used for system analysis

LTL logics to express properties

Let’s see CTL logics to express additional properties (next sequence)

44 / 60



45 / 60



CTL Properties

46 / 60



Introduction

Now you know:

how to build a Reachability Graph

how it can be used for system analysis

LTL logics to express properties

Let’s see CTL logics to express additional properties

47 / 60



Introduction

Now you know:

how to build a Reachability Graph

how it can be used for system analysis

LTL logics to express properties

Let’s see CTL logics to express additional properties

47 / 60



The branching time semantics

s0

s1

s3

s0

s1 s2

s6

s2

s4

s6

s2

s7

s1

s2

s4

s6

s2

s7

s1

s5

s7

s1

s0

s1 s2

48 / 60



Logics to express branching time properties

CTL = Computational Tree Logic.
Syntax: let AP be a set of atomic propositions.

I a ∈ AP is a CTL formula.
I If φ1 and φ2 are CTL formulae then so are
¬φ1 φ1 ∧ φ2 EX φ1 EG φ1 Eφ1 U φ2

where X stands for “next”, G for “globally”, E for “exists” and U for “until”.

Let K = 〈S, l,→, s0〉 be a Kripke structure. With each CTL formula φ, we
associate a set Sk (φ) ⊆ S of states, such that:

s ∈ Sk (a) ⇔ a ∈ l(s)

s ∈ Sk (¬φ) ⇔ s < Sk (φ)

s ∈ Sk (φ1 ∧ φ2) ⇔ s ∈ Sk (φ1) ∩ Sk (φ2)

s ∈ Sk (EXφ) ⇔ ∃s′ : s → s′ ∧ s′ ∈ Sk (φ)

s ∈ Sk (EGφ) ⇔ ∃ a run τ of K s.t. τ(0) = s ∧ ∀ i ≥ 0, τ(i) ∈ Sk (φ)

s ∈ Sk (Eφ1 U φ2)⇔ ∃ a run τ of K s.t. τ(0) = s ∧ ∃ i, τ(i) ∈ Sk (φ2)∧

∀k < i, τ(k) ∈ Sk (φ1)

K satisfies a CTL formula φ iff s0 ∈ Sk (φ)

49 / 60



Logics to express branching time properties

CTL = Computational Tree Logic.
Syntax: let AP be a set of atomic propositions.

I a ∈ AP is a CTL formula.
I If φ1 and φ2 are CTL formulae then so are
¬φ1 φ1 ∧ φ2 EX φ1 EG φ1 Eφ1 U φ2

where X stands for “next”, G for “globally”, E for “exists” and U for “until”.

Let K = 〈S, l,→, s0〉 be a Kripke structure. With each CTL formula φ, we
associate a set Sk (φ) ⊆ S of states, such that:

s ∈ Sk (a) ⇔ a ∈ l(s)

s ∈ Sk (¬φ) ⇔ s < Sk (φ)

s ∈ Sk (φ1 ∧ φ2) ⇔ s ∈ Sk (φ1) ∩ Sk (φ2)

s ∈ Sk (EXφ) ⇔ ∃s′ : s → s′ ∧ s′ ∈ Sk (φ)

s ∈ Sk (EGφ) ⇔ ∃ a run τ of K s.t. τ(0) = s ∧ ∀ i ≥ 0, τ(i) ∈ Sk (φ)

s ∈ Sk (Eφ1 U φ2)⇔ ∃ a run τ of K s.t. τ(0) = s ∧ ∃ i, τ(i) ∈ Sk (φ2)∧

∀k < i, τ(k) ∈ Sk (φ1)

K satisfies a CTL formula φ iff s0 ∈ Sk (φ)

49 / 60



Logics to express branching time properties

CTL = Computational Tree Logic.
Syntax: let AP be a set of atomic propositions.

I a ∈ AP is a CTL formula.
I If φ1 and φ2 are CTL formulae then so are
¬φ1 φ1 ∧ φ2 EX φ1 EG φ1 Eφ1 U φ2

where X stands for “next”, G for “globally”, E for “exists” and U for “until”.

Let K = 〈S, l,→, s0〉 be a Kripke structure. With each CTL formula φ, we
associate a set Sk (φ) ⊆ S of states, such that:

s ∈ Sk (a) ⇔ a ∈ l(s)

s ∈ Sk (¬φ) ⇔ s < Sk (φ)

s ∈ Sk (φ1 ∧ φ2) ⇔ s ∈ Sk (φ1) ∩ Sk (φ2)

s ∈ Sk (EXφ) ⇔ ∃s′ : s → s′ ∧ s′ ∈ Sk (φ)

s ∈ Sk (EGφ) ⇔ ∃ a run τ of K s.t. τ(0) = s ∧ ∀ i ≥ 0, τ(i) ∈ Sk (φ)

s ∈ Sk (Eφ1 U φ2)⇔ ∃ a run τ of K s.t. τ(0) = s ∧ ∃ i, τ(i) ∈ Sk (φ2)∧

∀k < i, τ(k) ∈ Sk (φ1)

K satisfies a CTL formula φ iff s0 ∈ Sk (φ)
49 / 60



Illustration of the CTL semantics (1/8)

EXp

50 / 60



Illustration of the CTL semantics (2/8)

EGp

51 / 60



Illustration of the CTL semantics (3/8)

EqUp

52 / 60



Illustration of the CTL semantics (4/8)

EFp= (Etrue Up)

53 / 60



Illustration of the CTL semantics (5/8)

AXp= ¬EX¬p

54 / 60



Illustration of the CTL semantics (6/8)

AGp= ¬(Etrue U¬p)

55 / 60



Illustration of the CTL semantics (7/8)

AFp= ¬EG¬p

56 / 60



Illustration of the CTL semantics (8/8)

AqUp

57 / 60



Examples of CTL formulae

〈C .All〉 Idle

C = {c1, c2, c3}

Waiting

t1
〈X〉

〈X〉

Busy Res

t3

〈X〉

t2
〈X〉

〈X〉

〈X〉

Atomic propositions:
I p(c), where, p ∈ P \ {Res} and c ∈ C
I t(c), where, t ∈ T and c ∈ C

AG¬(Busy(c1) ∧ Busy(c2)): it always holds
that c1 and c2 do not appear together in
critical section (place Busy).

AG(Waiting(c3)⇒ AF(Busy(c3))):
whenever c3 requests to enter its critical
section, it will eventually succeed.

AG(EF(Idle(c1) ∧ Idle(c2) ∧ Idle(c3))):
whatever the system state, it has the
possibility to return to the initial state.

58 / 60



Conclusion

At this stage, you know:

Symmetric Nets with their syntax and semantics

how to build a Reachability Graph

how it can be used for system analysis

LTL and CTL logics to express properties

Let’s put into practice using the CosyVerif platform!

59 / 60



Conclusion

At this stage, you know:

Symmetric Nets with their syntax and semantics

how to build a Reachability Graph

how it can be used for system analysis

LTL and CTL logics to express properties

Let’s put into practice using the CosyVerif platform!

59 / 60



60 / 60


