Petrl Nets Tutorjal from SymmeMefs to
Symmetrlc Nets

, O tIi_n»‘ef_ ‘

@ Symmetries in Symmetric Nets

» Towards the use of symmetries

» Symbolic Marking

» Symbolic Firing

» Symbolic Reachability Graph (SRG)
@ Symmetric nets with Bags (SNB)

» Syntactic extensions

» Semantics (Firing rule)

> “unfolding” into SN (when finite)

@ Conclusion

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

At this stage, you know:
@ Symmetric Nets with their syntax and semantics
@ how to build a Reachability Graph
@ how it can be used for system analysis
@ how to use CosyVerif platform to practice these concepts and formalisms.

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

At this stage, you know:
@ Symmetric Nets with their syntax and semantics
@ how to build a Reachability Graph
@ how it can be used for system analysis
@ how to use CosyVerif platform to practice these concepts and formalisms.

Let’s now have an idea about the use of symmetries to reduce the size of the
constructed structures.

: TgWa-rfd:_s‘th'e' use of symmetries (1/2)

C = {c1,0,C3)

L 2
@ In the initial Marking, t; is enabled for each colour instance marking of Idle.

| Ao Idle Mo

3 Idle(ci + ¢z + c3)

L A Ry +Res

é 9 (t,c1) (t,c3)

¥ () Waiting

7 X)

£) c— M; M,

< o0 Idle(cz + c3) ldle(ci + ¢2)
& +Waiting(cy) +Waiting(cs)
(O Busy (®) Res +Res +Res

T XLt T

: TgWa-rfd:_s‘th'e' use of _sym'metries (1/2)

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

C = {c1,0,C3)

T Idle

(X)
1 e

@ (t, ¢t
() Waiting

X>
I e

o0 Idle(cz + c3)

+Waiting(c1)
() Busy (® Res +Res
X 3 T

@ In the initial Marking, t; is enabled for each colour instance marking of Idle.
@ If we apply a permutation on the transition colour, the obtained markings are

identical up to this permutation.

ldle(ci + ¢ + ¢3)

M — | cs—oc [T— M
ldle(ci + ¢2)

+Waiting(cs)

: TgWa-rfd:_s‘th'e' use of symmetries (2/2)

@ We can represent this set of firings using variables:
ldle(x+y+z)+ Res

(t,2)
ldle(x + y) + Waiting(z) + Res

x,y,ze C
S - 2

@ Then, we obtain the actual firings by testing all possible instantiations for x, y
and z.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

, P‘Aerfm Uiéfiohs» on Bag-sv

@ Let A be a set, s a permutation on A, and a a bag of A.

X€eA X€eA

@ In particular : s.a(s.x) = a(x) (notation: s.c = s(c))

@ Example:
» Leta = ¢y + 2.c, be abag of A = {c1, ¢, C3}, and
» s, with s.ci = ¢3, S.Co = ¢y, S.C3 = Co, be a permutation on A,
> then, s.a = s(c1 +2.c;) = s.c1 + 2.(s.c2) = ¢3 + 2.¢4

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage, you:

@ know Symmetric Nets with their syntax and semantics,
@ have an intuitive idea about the notion of symmetries in SNs.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage, you:

@ know Symmetric Nets with their syntax and semantics,
@ have an intuitive idea about the notion of symmetries in SNs.

Let’s now study, formally, these symmetries and their usage for the
construction of a reduced reachability graph (next sequence).

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

<
2
o}
=
S
o
Q
o
|
o
)
&
Q
o
|
=
[
o
=
©
o
=
0
a
o
2
5]
8
2
°
&
o
=
S
g
S
<
w
]
g
a
2]
|
o
)
&
2
T
—4
B
&
s
]
5
e

Now, you:

@ know Symmetric Nets with their syntax and semantics,
@ have an intuitive idea about the notion of symmetries in SNs.

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Now, you:

@ know Symmetric Nets with their syntax and semantics,
@ have an intuitive idea about the notion of symmetries in SNs.

Let’s now study, formally, these symmetries and their usage for the
construction of a reduced reachability graph.

: S‘ym:r-rjé_t‘rié's and SNs

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

@ ConsideranetN= (P, T,C, W-, Wt, Mp)."

@ Consider the set S = {(s1, ..., Sp)|s; € S}, where,

@ With each unordered class C;, we associate the (total) permutation group S;.
@ With each ordered class C;, we associate the (total) rotation group S..

We call S the set of symmetries of a N.

@ Useful properties: let C; be a colour class and f; : C(t) — Bag(C;) (a colour
function) and s; the associated symmetry.

Q f-=X{=>S,'0 i =fios;, Vs € S;.
e = Ci.A/I:>S,‘O P = f,'OS,‘: C,A”, VS,'ES,'.

© fi=X++=r0f=fon,VreS,. (when C;is ordered).

1At this step, we consider that transition guards do not refrence colors explicitly!

: |\/| rkngs E'qu,ival'eh_c'e and Mark‘ings Classes

@ Markings equivalence (=s):

M=s M ©dseS,M =s.M

@ For each marking M, we define its marking class (orbit) with respect to S,
[M]s:
[Ml]s ={M'|ds € S,M' = s.M}

[M]s

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

bling Equivalence

(t,c) is enabled in a marking M

g
(t,s.c) is enabled in the marking s.M

@ (t,c) is enabled in a marking M
& M(p) = W(p.t)(ct)
& Ve e C(p), M(p)(c) = W(p, t)(cr)(c)
& Ye e C(p),s-M(p)(s.c) = s.W(p,t)(ct)(s.c)
Since, s.W=(p, t)(ct) = W (p, t)(s.ct), then
& Yec e C(p),s-M(p)(s.c) = W=(p,t)(s.ct)(s.c)
& Ye e C(p),s-M(p)(c) = s.W(p,t)(ct)(c)
& (t,s.¢;) is enabled in a marking s.M

F‘i:_rihgféc‘]ui\'/alehc'e' o

(t.ct) (t,s.ct)
M— M © sM——> s.M

o M W

& M(p) = M(p) - W(p,t)(ct) + WH(p, t)(ct)
© s.M(p) = s.M(p) - s.W~(p, t)(cr) + s.W* (p, t)(ct)
Since, s.W=(p, t)(ct) = W~ (p, t)(s.ct), and
S. W*(p, t)(ct) = Wt(p, t)(s.ct), then
© s.M(p) = s.M(p) - W~(p. t)(s.c;) + W*(p.t)(s.ct)

(t.s.cr)

s sM—— s.M

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage, you know:
@ Symmetric Nets with their syntax and semantics,
@ the formal definition definition of symmetries in SN,
@ the formal definition of markings and firings equivalences.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage, you know:
@ Symmetric Nets with their syntax and semantics,
@ the formal definition definition of symmetries in SN,
@ the formal definition of markings and firings equivalences.

How to use this notions to derive automatically a quotient reachability graph
(next sequence).

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Introduction

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

The definition of an adequate representation for marking classes, first
consists in constructing a quotient graph that represents the ordinary
reachability graph.

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

The definition of an adequate representation for marking classes, first
consists in constructing a quotient graph that represents the ordinary
reachability graph.

This is achieved through the notions of:
@ Dynamic subclasses.
@ Symbolic markings.

.Dynarmic subclasses for unordered classes

@ We group in a set (dynamic subclass) the objects of C; that have the same
marking.

@ Example:
» M = Idle(cy + c,) + Waiting(cs) + Res

= ldle(x + y) + Waiting(z) + Res
M(x) = M(y) - Z',|1Z'| = 2
M(z) # M(x) et M(z) # M(y) — Z2,12% =1

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

.Dynarmic subclasses for unordered classes

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

@ We group in a set (dynamic subclass) the objects of C; that have the same
marking.

@ Example:
» M = Idle(cy + c,) + Waiting(cs) + Res

= ldle(x + y) + Waiting(z) + Res
M(x) = M(y) - Z',|1Z'| = 2
M(z) # M(x) et M(z) # M(y) - 22,12% =1

1Z'l = 2,128 = 1

= M = ldle(Z") + Waiting(Z?) + Res
(Symbolic Marking)

‘Dynamic subclasses for ordered classes

@ A dynamic subclass represents objects that have the same marking and

> are consecutive in the class enumeration order, and
» the successor of the last element represented by Z' is represented by Z'*'.

@ Example: C ={c1,02,C3,C1, 05}
> Think(Cg + C4 + Cs) S Eat(c1 ate Cs) G F(Cs) Q Think
= A dynamic subclass by object. X i
» Think(Z2 + Z* + Z5) + Eat(Z' + Z°) + F(Z°), AR WY
IZI| =1 (X)
e Think(c1 +Cc3 + C5) aF Eat(Cg =F C4) = F(C1) C) Eat F
Think(c1 +Co + C4) T Eat(c3 SIS Cs) T F(Cz)
Think(cz + ¢3 + ¢5) + Eat(cy + ¢4) + F(cs) X
()
()

)
Think(cy 4 ¢3 + ¢4) + Eat(cs + ¢5) + F(cq
)

D Oe(X44)
RF +H(X++
Think(cz + ¢4 + ¢s) + Eat(cy + ¢3) + F(cs

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

So far, we know:
@ how to represent, in symbolic and unique way, the marking classes.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion ™~ -

So far, we know:
@ how to represent, in symbolic and unique way, the marking classes.

To construct directly a quotient graph that represents the ordinary
reachability graph, we need a way to perform a firing rule, but applied
directly to the symbolic markings (next sequence).

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

5 “COBYNGSA, " L
-

Introduction” -

We know:
@ how to represent, in symbolic and unique way, the marking classes.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

<
2
o}
=
S
o
Q
o
|
o
)
&
Q
o
|
=
[
o
=
©
o
=
0
a
o
2
5]
8
2
°
&
o
=
S
g
S
<
w
]
g
a
2]
|
o
)
&
2
T
—4
B
&
s
]
5
e

We know:
@ how to represent, in symbolic and unique way, the marking classes.

The definition of a symbolic firing rule that applies directly on symbolic
representations, constitutes the second and final stage to obtain a quotient
graph.

: Symbohc F'iri'ngfrUIé s

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

@ Before firing, we decompose the dynamic subclasses to isolate the objects
that are used to instantiate the colour functions.

@ Example:

Idle(Z) + Res ldle(Z' + Z'°) + Res
12 =3 12| = 2,12'0] = 1

Z'0 contains the chosen object to instantiate X, Z' those that are not
participating in the firing.

@ We then apply the classical firing rule.

@ After the firing, we must group the resulting subclasses. ..

Example

Think(Z'+Z3)+ F(Z')+ Eat(Z?)
12" = 3,128 = 2% =1

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Example

Think(Z'+Z3)+ F(Z')+ Eat(Z?)
12| =3,|1Z%| = |Z° =1
Think(Z'0 + ZV1' + 712 + 78) +
F(Z" '+ 2" + Z2'2) + Eat(Z?)
1Z' =1

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

‘Example
Think(Z' +2°)+ F(Z") + Eat(Z?) (RF.Z%) Think(Z) + F(2)
12| =3,|1Z%| = |Z° =1 1Z|=5

Think(Z'0 + ZV1' + 712 + 78) +
F(Z" '+ 2" + Z2'2) + Eat(Z?)
12| = 1

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Example

Think(Z' + Z%)+ F(Z") + Eat(Z?) (RF.Z%) Think(Z) + F(Z)
1ZY = 3,128 = 12| =1 12l =5
Think(Z'0 + ZV1' + 712 + 78) +
2 ZL e
1Z'| =1

(TF,Z'?)

Think(Z'' + Z'2 4+ Z3) +
F(Z'?) + Eat(Z'° + Z?)
Think(Z2 + Z® + Z°) + F(Z®%) +
Eat(Z' + Z*)

[1

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Example

Think(Z' + Z%)+ F(Z") + Eat(Z?) (RF.Z%) Think(Z) + F(Z)
|2 = = 12l =5

Think(Z'0 + ZV1' + 712 + 78) +

F(Z'° + Z"' + Z'2) + Eat(Z?)

2= 1 1z 1

g 2=y

2 (TF, 219) (TF, 2"

s Think(Z'' + Z'2 4+ Z3) + Think(Z'° + Z'2 4+ Z3) +

5 F(Z'2) + Eat(Z'° + Z2) F(Z'%) + Eat(Z"' + 22

2 Think(Z% +Z8 + Z2°) + F(Z°) + Think(Z' + Z® + Z°) + F(Z") +
p Eat(Z' + Z*) Eat(z2 + Z*%)

Conclusion -~

At this stage, we know:
@ how to represent, in symbolic and unique way, the marking classes,

@ how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage, we know:
@ how to represent, in symbolic and unique way, the marking classes,

@ how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

We are ready to derive an algorithm to construct the symbolic reachability
graph (next sequence).

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

<
2
o}
=
S
o
Q
o
|
o
)
&
Q
o
|
=
[
=i
=
©
o
=
o
a
o
2
5]
8
2
3
s
o
=
S
i
S
<
w
]
&
a
]
|
o
)
&
2
T
—4
B
@
s
]
5
e

Now, we know:
@ how to represent, in symbolic and unique way, the marking classes,

@ how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Now, we know:
@ how to represent, in symbolic and unique way, the marking classes,

@ how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

We are ready to derive an algorithm to construct the symbolic reachability
graph.

SRG constructlon Algorlthm

SRG Constructlon(=(P,T,C,W~, W', Myp))
SRG.Q = {My}; SRG.6 = 0;
SRG.qy = A7Io; sStates = {Mp}:
While (sStates <> 0) {
S = pick a state in sStates ;
sStates = sStates \ {5};
foreach t e T,¢ € C(t) {
it (S[(t,EM){
s[(t, ¢))nis;
f (s ¢ SRG.Q) {
SRG.Q = SRG.Q U {ris} ;
sStates = sStates U {rs};
}
SRG.6 = SRG.6 U{(8,ns)};
SRG.A(S, ris) = (t, C);
}
}

}
return SRG;

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

ymple: SRG of the critical section access model -

Idle(Z) + Res 7 classes instead of
=3 20 markings

tz, Z2)

(t.2)

Idle(Z") + Waiting(Z2) + Res ~_(:2°)_ Idle(Z") + Busy(Z?)
EW:2Eﬂ: 12l = 2,122 =1

3,

(t1 > Z1) \\

Idle(Z") + Waiting(Z + Res (t27 Idle(Z")+ Waiting(Z?)+Busy(Z®)

12| =1, |Z2I - |Z1 |28 = |Z%) = 1
t3, Z")
(4.2")
Waiting(Z?) + Res (t2’ Waiting(Z') + Busy(Z?)

ZE =3 17| = 2,122| = 1

: E ample 'S'RG;"Of t'he'di‘n,ing phillos,o'phers_probl'em'-

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Think(Z) + F(Z)
1Z| =5

(TF,Z){ {(PF,ZZ)

Think(Z' + %)+ F(Z') + Eat(2?)
= 12 1 |2 =

(T, 2™ (PF,Z"),
(TF,Z"") (PF,Z%)
Think(Z2 + Z® + Z°) + F(Z®) + Eat(Z" + Z*)

1Z'] = 1

3 symbolic markings instead of 11 markings

_,V\{h;a:f does 'th.e-fSyrh‘bdlic,,Reachabi.lity Graph prese'rv.e? 3

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

@ Each marking represented by a class (a symbolic marking) is reachable.
@ Each reachable marking is represented by a class.
@ Each firing sequence of the RG is represented in the SRG.

@ To each sequence of the symbolic graph corresponds a sequence of the RG.

Then, what is missing?

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

@ We cannot distinguish between the following situations:

() () ‘
oNofcRoNOEO
SRR

O
‘@

Conclusion -

@ So far, the approach presented imposes that all objects of the same class
behave identically.
> A class groups a set of objects that have the same nature.
» The obtained reduction, SRG vs. RG, is maximal.

@ How to deal with the case where objects have the same nature, but with
potentially different behaviours?
» Example: a class that represents a set of processors divided in two subsets: fast
and slow.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

-

.Conclusion " -

@ So far, the approach presented imposes that all objects of the same class
behave identically.

> A class groups a set of objects that have the same nature.
» The obtained reduction, SRG vs. RG, is maximal.

@ How to deal with the case where objects have the same nature, but with
potentially different behaviours?

» Example: a class that represents a set of processors divided in two subsets: fast
and slow.

@ Use of static subclasses...
» Each class is partitioned into cells, called static subclasses, where the objects of
the same cell behave identically.
» Symmetries of nets easily extend as follows... (next sequence)

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Introduction” -

@ So far, the approach presented imposes that all objects of the same class
behave identically.
> A class groups a set of objects that have the same nature.
» The obtained reduction, SRG vs. RG, is maximal.

@ How to deal with the case where objects have the same nature, but with
potentially different behaviours?
~ Example: a class that represents a set of processors divided in two subsets: fast
and slow.

@ Use of static subclasses...
» Each class is partitioned into cells, called static subclasses, where the objects of
the same cell behave identically.
» Symmetries of nets easily extend as follows...

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

‘Symmetries, static subclasses and SNs

@ Consideranet N= (P, T,C, W, W, Mp), where,
» Each class C; is partitioned into n; cells.

YO0 <jS n,-,|D,',,-| >0,

Gt
I YO<j<n, j#j=D;nDy=0.

D;;, such that {

=il

» D;; is called a static subclass.

@ The symmetries of N are defined by the set S = {(s1,...,8n) | i € Si},
where:
@ With each unordered class C;, we associate a permutation subgroup S;,

@ With each ordered class C;, we associate a rotation subgroup S;,
e VD,'J,VS,‘ € S,' " S,‘(D,'_j) = D,‘J.

@ Additional syntax constraints:

» Broadcast functions are defined w.r.t. subclasses (e.g. D;;.All)
» Transition Guards are defined w.r.t. subclasses (e.g. [x € D;}])

‘Example of SN with static subclasses-

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

C = Dy U D, where
D; = {c1, 2}, Do = {c3, C4}

(X)

[x € D] C— 1,

(X)

X)
I e
X)

(X)

ldle

@ Colour class C is partitioned into two static
subclasses: Dy and D..

() Waiting

@ Transition t; can be enabled (and fired) only
by elements of D;.

() Busy (®) Res

f3

_ I"rppa.c‘tjfdf static ,subclés's_es on the SRG (1_/‘2)

B e Idle(Z) + Res

D; = {c1, ¢2}, e
(fwz){
——> ldle
<Y ldle(Z") + Waiting(Z?) + Res
X [N 7 | 1

[X € D] - t
() Waiting

Idle(ct + c» + c3) + Waiting(c*) + Res
Idle(ci + ¢z + ca) + Waiting(c®) + Res

O B @ The symbolic marking defined assumes that
usy R ;
all colours of a class are symmetric. So, the
09 instantiation is trivial!

ts @ This is no more correct when static
subclasses are introduced.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

, Iimpaét‘fo‘f static ,sub_clés's_es on the SRG (2/2)

C = Dy U L. where ldle(Z' + Z?) + Res
D; = {c1, &2}, |1z =2,|2%| = 2
2V C Dyt SN
——r Idle
X ((11,21)[
[x € Dy] —
1 5 1 ldle(Z" + Z®) + Waiting(Z?) + Res

R 1, | 7°T=2
() Waiting Z',Z2c Dy,Z3c D,

(X
(X)
(O Busy (®) Res
J* @ A dynamic subclass must refer to the static

subclass to which it belongs (i.e. to which
ty the elements it represents belong).

(X)

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

@ Static subclasses are needed to model complex algorithms in a compact way.

@ A symbolic marking must refer, in its definition, to these static subclasses,
otherwise the underlying represented markings will be spurious!

@ The efficiency of the constructed SRG (the reduction factor) depends on
these static subclasses:
» When each class of the net contains only one static subclass, the reduction is
maximal.
> When the classes of the net are partitioned into static subclasses with only one
element, there is no reduction.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

@ Static subclasses are needed to model complex algorithms in a compact way.

@ A symbolic marking must refer, in its definition, to these static subclasses,
otherwise the underlying represented markings will be spurious!

@ The efficiency of the constructed SRG (the reduction factor) depends on
these static subclasses:
» When each class of the net contains only one static subclass, the reduction is
maximal.
> When the classes of the net are partitioned into static subclasses with only one
element, there is no reduction.

How to deal with this last case (next sequence).

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Introduction” -

@ Static subclasses are needed to model complex algorithms in a compact way.

@ A symbolic marking must refer, in its definition, to the these static subclasses,
otherwise the underlying represented markings will be spurious!

@ The efficiency of the constructed SRG (the reduction factor) depends on
these static subclasses:
» When each class of the net contains only one static subclass, the reduction is
maximal.
> When the classes of the net are partitioned into static subclasses with only one
element, there is no reduction.

We will now see how to deal with this last case.

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Example ériticjal 'sécfibhwith pri‘oriti'es' (1/.2')

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

a |

(X)

(X)

(C.Ally

0+ l s

L J
S
Y)

o |3

(X)

@ All places have C = {py, p2, p3} as
colour domain.

@ Because of the guard [X < Y] on
transition t;, C has to be partitioned
into 3 static subclasses:
C=DiuD,U D3, where D; = {pi},
forie{1,2,3}.

@ The guard [X < Y] is written:
\/i<j (X € D,‘ AY € D/)

Example ériticfal 'sé_cfiohwith pri‘oriti'es' (2/.2')

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

idle @

(X

free

—— - |

[

(C.Ally

(em)
g.Select

(C.All - X)
e

(X)
(X)
(X)
() Waiting
(X)
a | (X)
(X)
POV || B4
L J
\/ [X<Y]
(X))
o (3
(X)
cs QO
X |t

(X)

Since all defined static subclasses
are singletons, and

the symmetries of a SN are defined
according to these subclasses (i.e.
only objects of the same subclass
are symmetrical),

then, the constructed SRG of this
SN has the same size as the RG,
i.e. no reduction is possible!

Is it possible to deal with this
problem?

, S‘_Nfanfd_ bar'tial-f‘symm'etr'ies: observation

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

idle @

(X)

free

————— - [

(C.Ally

)
g.Select

(C.All - X)
—_>

(X)
x0
X0
() Waiting
X0
a | (X)
0
POV || 4
L J
|
(X))
f3
x0
cs O
X |t

(X)

@ The problem (asymmetry) comes
from a single transition (f;) and is
propagated in the whole net!

@ The guard and the firing of i,
distinguish the objects = objects
are asymmetrical.

@ The enabling and the firing of
transitions t;, tp, t3 and t5 do not
need information about the identity
of the objects = objects are
symmetrical.

‘SN and partial symmefries: idea -

L @ (X) @ Forget the asymmetries (static

o 0 00 subclasses) while not needed to

3 e test the enabling of a transition.

- x0

2 () Waiting @ Reintroduce the static subclasses
g X while testing the enabling of

5 free e t 00 asymmetric transitions (transitions
£ that refer to static subclasses).

& ((c.Am X) 1

8 Cj Select m

£ < " x<v] |® Thisway, the propagation of

5 can-x & R asymmetries will be contained in

@ - small parts.

2 9]

cs O

i can Oy b (X)

B
3
Y
&
@
Q7
o
1
il
oy

<
2
o}
=
S
o
Q
o
|
o
)
&
Q
o
|
=
[
=i
=
©
o
=
o
a
o
2
5]
8
2
3
s
o
=
S
i
S
<
w
]
&
a
]
|
o
)
&
2
T
—4
B
@
s
]
5
e

@ SN do not avoid the interleaving inherent to distributed systems (that could
be avoided by partial order-based techniques)

@ SN do not easily model multiple data association with a single “identifier”

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

SN do not avoid the interleaving inherent to distributed systems (that could
be avoided by partial order-based techniques)

SN do not easily model multiple data association with a single “identifier”
SNB (B=bags) bring a solution to these problems
Suppression of spurious intermediate states

Possibility to associate items as bags themselves
Models are even more compact and parametrisable than with SNs

en 'e_xample (4/2)

Voting machine example

(V) (V)

e /€S e 10

<V>{ MJ

() VotedYes () VotedNo

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA
o
=
S

The voting

system 'e_xample (4/2)

Voting machine example

@ Reachability graph shows all
possible votes

(V) (V)

e /€S e 10

<V>{ MJ

() VotedYes () VotedNo

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA
o
=
S

The voting

system 'e_xample (4/2)

Voting machine example
@ Reachability graph shows all

possible votes
Ready @ High complexity:
3V 4+ 1 states
e start (IVi+2)+1 symbolic states
2
<v.au>l

(V) (V)

e /€S e 10

<V>{ MJ

() VotedYes () VotedNo

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA
o
=
S

The voting

system 'e_xample (4/2)

Voting machine example

V={v,...,vn} @ Reachability graph shows all
veV possible votes
Ready @ High complexity:
3V + 1 states
e start (IVi+2)+1 symbolic states
2
<v.au>l

vy " Incurring problems

e /€S e 10

<V>{ MJ

() VotedYes () VotedNo

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA
o
=
S

The voting

system 'e_xample (4/2)

Voting machine example

V={v,...,vn} @ Reachability graph shows all
veV possible votes
Ready @ High complexity:
3V + 1 states
e start (IVi+2)+1 symbolic states
2
<v.au>l

vy " Incurring problems

i yES = N0 @ 2V possible vote results

<V>{ MJ

() VotedYes () VotedNo

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA
o
=
S

-

The voting

system 'e_xample (4/2)

Voting machine example

computed symbolically
Limit of Symmetric Nets

2 V={vi,....vn} @ Reachability graph shows all

. 1o possible votes

R Ready @ High complexity:

é 3V + 1 states

é o= start (Vi+2)+1 symbolic states
5 2

o <v.au>l

i Voting |) b

roblem

S M ncurring problems

¢ ammim yE5S a0 @ 2V possible vote results

EM w @ no symbolic firing to produce all
g possible votes:

E () VotedYes () VotedNo Vote categories cannot be

“The voting

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

-

Symmetric Net Model

V:{V1,...
veV

2 Vn)

Ready

e start

(V.ally l

O VotedYes

Voting

(v)

O VotedNo

system example (2/2) -

Symmetric Net with Bags Model

V=Avq,...,Vy}
Y € Bag(V)

(®) Ready

- start
(V.ally

(O Voting

(v.ally
[unique Y] e vote

Y) (~Y)

() VotedYes () VotedNo

~

Conclusion -~

At this stage:

@ you have seen a basic illustration of SNBs
@ you know that SNBs capture bags of values

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage:

@ you have seen a basic illustration of SNBs
@ you know that SNBs capture bags of values

Let’s present the functions manipulated in SNBs
and the firing rule (next sequence)

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

5 “COBYNGSA, " L

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Now you know:

@ the basic underlying features of SNBs
@ that SNBs capture bags of values

Introduction” -

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Now you know:

@ the basic underlying features of SNBs
@ that SNBs capture bags of values

Let’s present the functions manipulated in SNBs and the firing rule

F_uncti(j;n‘s and »theik_uée‘i.n firings -

Basic functions (colours and bags)

Class C is [a,b,c]; X) .
Var X in C; (C.ally C Px C Px: ©

PaC ttX=a Pa: @ @ ©
P @—; bl Ps Bag(C) P: @ —— Ps: @

hole(C))
<Wge()»C) Pw Bag(C) Pw:

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

F_Unctio'ln‘s and »their_uée‘i_n firings -

Basic functions (colours and bags)

Class C is [a,b,c]; X) .
Var X in C; (C.ally C Px C Px: ©

PaC t:X=a Pa: @ @ ©
P@O— X P:@ ——
t NGl Ps Bag(C) Ps:

(whole(C))
ﬂ»@ Pw Bag(C) Pw:

Bag manipulations

Class C is [a,b,c,d];

Var Y1,Y2 in Bag(C); tY1=
cP1@o._ O ruc PI:@O Y2-(00) Pu: @0 O ©

. —> Pd: ©
cpzt Pd C P20 0 @ P2: @

Tutorial @ Petri Nets 2015 — S. Baarir. F. Kordon. L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

B‘ggs:- fﬁ_hctibnsﬁ‘USéd. in guards

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

ord(x) : the rank of element x in an ordered set

Unique Y : true iff elements appear at most once in Y
card(Y) : the cardinatlity of bag Y

Conclusion -~

At this stage:

@ you know the functions that operate on bags
@ you know the additional functions used in guards

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

At this stage:

@ you know the functions that operate on bags
@ you know the additional functions used in guards

Let’s present a more complete example (next sequence)

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

<
2
o}
=
S
o
Q
o
|
o
)
&
Q
o
|
=
[
=i
=
©
o
=
o
a
o
2
5]
8
2
3
s
o
=
S
i
S
<
w
]
&
a
]
|
o
)
&
2
T
—4
B
@
s
]
5
e

Now you know:

@ the functions that operate on bags
@ the additional functions used in guards

<
2
o}
=
S
o
Q
o
|
o
)
&
Q
o
|
=
[
=i
=
©
o
=
o
a
o
2
5]
8
2
3
s
o
=
S
i
S
<
w
]
&
a
]
|
o
)
&
2
T
—4
B
@
s
]
5
e

Now you know:

@ the functions that operate on bags
@ the additional functions used in guards

Let’s present a more complete example

The global allocation mechanisms

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

A way to avoid deadlocks in systems
Make one of the four necessary conditions fail

Principle
When a program enters a critical section, it must
own all the resources it will need in this piece of code

‘Modeling the problem (1/6)

Entering in the critical section

Class
Proc is [pl, p2, p3];
Res is 1..6;
Domain
BagR is Bag(Res);
P_BagR is <Proc, BagR>;
Var
p in Proc;
R, R2 in BagR;

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

‘Modeling the problem (2/6)

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Resources

OutCS

Pyoe
I'roc

O

States of the system

InCS P _BagR

‘Modeling the problem (3/6)

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Entering in the critical section

Resources
Res
<R>

enter [R < >
[card(R)>0] ’

InCS P_BagR
<p>

OutCS

Proc

Modeling the problem (4/6)

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Releasing some resources (and staying in the critical section)

Resources
Res
) Xa |

SKINZ
<R>

enter
[card(R)>0]

InCS P_BagR

<p>

OutCS

Proc

Modeling the problem (5/6)

Exiting the critical section

Resources X
Res (f— i
release
J‘\«‘RZ [card(R2)>0 and
<R> < R2 CR]
2>
enter [1 5 exit
[card(R)>0] J L _/ [card(R)>0]
InCS P_BagR
<p>
OutCS (™) p
Proc

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Modeling the problem (6/6)

Initial marking of the system

<Res.all>

Resources
Res

exit
[card(R)>0]

enter

<Proc.all>

Tutorial @Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

This tutorial has presented:
@ Symmetric Nets with their syntax and semantics
> how to build the Reachability Graph
> how to use them for system analysis

@ How to use the CosyVerif platform to practice these concepts and formalisms

@ The use of global symmetries to reduce the Reachability Graph
» dynamic and static subclasses
> the symbolic firing rule
> the Symbolic Reachability Graph
> The notion of partial symmetries (the idea of it)

@ Symmetric Nets with Bags (SNB)

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

Conclusion -~

This tutorial has presented:
@ Symmetric Nets with their syntax and semantics

> how to build the Reachability Graph
» how to use them for system analysis

@ How to use the CosyVerif platform to practice these concepts and formalisms

@ The use of global symmetries to reduce the Reachability Graph

» dynamic and static subclasses

> the symbolic firing rule

> the Symbolic Reachability Graph

> The notion of partial symmetries (the idea of it)

@ Symmetric Nets with Bags (SNB)

and next, back to practice (how to model a system with SNB)

Tutorial @ Petri Nets 2015 — S. Baarir, F. Kordon, L. Petrucci (LRDE, LIP6 & LIPN) — CC 2015 — CC BY-NC-SA

