Petri Nets Tutorial, from Symmetric Nets to Symmetric Nets with Bags (session 3)

Souheib Baarir, Fabrice Kordon, Laure Petrucci

Souheib.Baarir@lrde.epita.fr Fabrice.Kordon@lip6.fr Laure.Petrucci@lipn.univ-paris13.fr LRDE, Epita LIP6, Université Pierre & Marie Curie LIPN, Université Paris 13

June 23th, 2015





# Outline

### Symmetries in Symmetric Nets

- Towards the use of symmetries
- Symbolic Marking
- Symbolic Firing
- Symbolic Reachability Graph (SRG)
- Symmetric nets with Bags (SNB)
  - Syntactic extensions
  - Semantics (Firing rule)
  - "unfolding" into SN (when finite)
- Conclusion



# Symmetries in Symmetric Nets

At this stage, you know:

- Symmetric Nets with their syntax and semantics
- how to build a Reachability Graph
- how it can be used for system analysis
- how to use CosyVerif platform to practice these concepts and formalisms.

C BY-P

CC 201

At this stage, you know:

- Symmetric Nets with their syntax and semantics
- how to build a Reachability Graph
- how it can be used for system analysis
- how to use CosyVerif platform to practice these concepts and formalisms.

Let's now have an idea about the use of symmetries to reduce the size of the constructed structures.

### Towards the use of symmetries (1/2)

CC BY-N

 $C = \{c_1, c_2, c_3\}$ 



• In the initial Marking, t<sub>1</sub> is enabled for each colour instance marking of *Idle*.

### Towards the use of symmetries (1/2)

 $C = \{c_1, c_2, c_3\}$ 



In the initial Marking, t<sub>1</sub> is enabled for each colour instance marking of *Idle*.
If we apply a permutation on the transition colour, the obtained markings are identical up to this permutation.

### Towards the use of symmetries (2/2)

#### • We can represent this set of firings using variables:

 $\begin{aligned} & \text{Idle}(x+y+z) + \text{Res} \\ & (t_1,z) \\ & x, y, z \in C \\ & x \neq y \neq z \end{aligned}$  $\begin{aligned} & \text{Idle}(x+y) + \text{Waiting}(z) + \text{Res} \end{aligned}$ 

#### Then, we obtain the actual firings by testing all possible instantiations for x, y and z.

### Permutations on Bags

Let A be a set, s a permutation on A, and a a bag of A.

$$s.a = s(\sum_{x \in A} a(x).x) = \sum_{x \in A} a(x).s(x)$$

• In particular : s.a(s.x) = a(x) (notation : s.c = s(c))

#### • Example:

- Let  $a = c_1 + 2.c_2$  be a bag of  $A = \{c_1, c_2, c_3\}$ , and
- s, with  $s.c_1 = c_3$ ,  $s.c_2 = c_1$ ,  $s.c_3 = c_2$ , be a permutation on A,
- ▶ then,  $s.a = s(c_1 + 2.c_2) = s.c_1 + 2.(s.c_2) = c_3 + 2.c_1$

# Conclusion

### At this stage, you:

- know Symmetric Nets with their syntax and semantics,
- have an intuitive idea about the notion of symmetries in SNs.

# Conclusion

### At this stage, you:

- know Symmetric Nets with their syntax and semantics,
- have an intuitive idea about the notion of symmetries in SNs.

# Let's now study, formally, these symmetries and their usage for the construction of a reduced reachability graph (next sequence).



# Symmetries to reduce the Reachability Graph

### Now, you:

- know Symmetric Nets with their syntax and semantics,
- have an intuitive idea about the notion of symmetries in SNs.

### Now, you:

- know Symmetric Nets with their syntax and semantics,
- have an intuitive idea about the notion of symmetries in SNs.

# Let's now study, formally, these symmetries and their usage for the construction of a reduced reachability graph.

### Symmetries and SNs

- Consider a net  $N = \langle P, T, C, W^-, W^+, M_0 \rangle$ .<sup>1</sup>
- Consider the set  $S = \{\langle s_1, \dots, s_n \rangle | s_i \in S_i\}$ , where,
  - With each unordered class  $C_i$ , we associate the (total) permutation group  $S_i$ .
  - **2** With each ordered class  $C_i$ , we associate the (total) rotation group  $S_i$ .

We call S the set of symmetries of a N.

• Useful properties: let  $C_i$  be a colour class and  $f_i : C(t) \rightarrow Bag(C_i)$  (a colour function) and  $s_i$  the associated symmetry.

$$f_i = C_i.All \Rightarrow s_i \circ f_i = f_i \circ s_i = C_i.All, \forall s_i \in S_i.$$

**③**  $f_i = X_i^j + + \Rightarrow r_i \circ f_i = f_i \circ r_i, \forall r_i \in S_i$ . (when  $C_i$  is ordered).

<sup>1</sup>At this step, we consider that transition guards do not refrence colors explicitly!

### Markings Equivalence and Markings Classes

CC BY-N

• Markings equivalence  $(\equiv_S)$ :

 $M \equiv_S M' \Leftrightarrow \exists s \in S, M' = s.M$ 

• For each marking *M*, we define its marking class (orbit) with respect to *S*,  $[M]_S$ :  $[M]_S = \{M' \mid \exists s \in S, M' = s.M\}$ 



### **Enabling Equivalence**

 $(t, c_t)$  is enabled in a marking *M*  $(t, s.c_t)$  is enabled in the marking *s.M* 

•  $(t, c_t)$  is enabled in a marking M  $\Leftrightarrow M(p) \ge W^-(p, t)(c_t)$   $\Leftrightarrow \forall c \in C(p), M(p)(c) \ge W^-(p, t)(c_t)(c)$   $\Leftrightarrow \forall c \in C(p), s.M(p)(s.c) \ge s.W^-(p, t)(c_t)(s.c)$ Since,  $s.W^-(p, t)(c_t) = W^-(p, t)(s.c_t)$ , then  $\Leftrightarrow \forall c \in C(p), s.M(p)(s.c) \ge W^-(p, t)(s.c_t)(s.c)$   $\Leftrightarrow \forall c \in C(p), s.M(p)(c) \ge s.W^-(p, t)(c_t)(c)$  $\Leftrightarrow (t, s.c_t)$  is enabled in a marking s.M

# Firing Equivalence

$$M \xrightarrow{(t,c_t)} M' \Leftrightarrow s.M \xrightarrow{(t,s.c_t)} s.M'$$

$$M \xrightarrow{(t,c_i)} M'$$

$$\Leftrightarrow M'(p) = M(p) - W^-(p,t)(c_t) + W^+(p,t)(c_t)$$

$$\Leftrightarrow s.M'(p) = s.M(p) - s.W^-(p,t)(c_t) + s.W^+(p,t)(c_t)$$
Since,  $s.W^-(p,t)(c_t) = W^-(p,t)(s.c_t)$ , and  
 $s.W^+(p,t)(c_t) = W^+(p,t)(s.c_t)$ , then  

$$\Leftrightarrow s.M'(p) = s.M(p) - W^-(p,t)(s.c_t) + W^+(p,t)(s.c_t)$$

$$\Leftrightarrow s.M \xrightarrow{(t,s.c_t)} s.M'$$

# Conclusion

### At this stage, you know:

- Symmetric Nets with their syntax and semantics,
- the formal definition definition of symmetries in SNs,
- the formal definition of markings and firings equivalences.

# Conclusion

### At this stage, you know:

- Symmetric Nets with their syntax and semantics,
- the formal definition definition of symmetries in SNs,
- the formal definition of markings and firings equivalences.

How to use this notions to derive automatically a quotient reachability graph (next sequence).



# Dynamic subclasses and Symbolic markings

CC BY-N Baarir, F. Kordon

The definition of an adequate representation for marking classes, first consists in constructing a quotient graph that represents the ordinary reachability graph.

DC BY-N

The definition of an adequate representation for marking classes, first consists in constructing a quotient graph that represents the ordinary reachability graph.

This is achieved through the notions of:

- Dynamic subclasses.
- Symbolic markings.

### Dynamic subclasses for unordered classes

- We group in a set (dynamic subclass) the objects of C<sub>i</sub> that have the same marking.
- Example:
  - $M = Idle(c_1 + c_2) + Waiting(c_3) + Res$ 
    - $\Rightarrow Idle(x + y) + Waiting(z) + Res$  $M(x) = M(y) \rightarrow Z^{1}, |Z^{1}| = 2$  $M(z) \neq M(x) \text{ et } M(z) \neq M(y) \rightarrow Z^{2}, |Z^{2}| = 1$

### Dynamic subclasses for unordered classes

- We group in a set (dynamic subclass) the objects of C<sub>i</sub> that have the same marking.
- Example:
  - $M = Idle(c_1 + c_2) + Waiting(c_3) + Res$

 $\Rightarrow Idle(x + y) + Waiting(z) + Res$   $M(x) = M(y) \rightarrow Z^{1}, |Z^{1}| = 2$  $M(z) \neq M(x) \text{ et } M(z) \neq M(y) \rightarrow Z^{2}, |Z^{2}| = 1$ 

 $\Rightarrow \widehat{M} = Idle(Z^{1}) + Waiting(Z^{2}) + Res$  $|Z^{1}| = 2, |Z^{2}| = 1$ (Symbolic Marking)

### Dynamic subclasses for ordered classes

#### A dynamic subclass represents objects that have the same marking and

- are consecutive in the class enumeration order, and
- the successor of the last element represented by Z<sup>i</sup> is represented by Z<sup>i+1</sup>.

#### • Example:

- ► Think  $(c_2 + c_4 + c_5) + Eat(c_1 + c_3) + F(c_5)$ ⇒ A dynamic subclass by object.
- Think $(Z^2 + Z^4 + Z^5) + Eat(Z^1 + Z^3) + F(Z^5),$  $|Z^i| = 1$
- ► Think $(c_1 + c_3 + c_5) + Eat(c_2 + c_4) + F(c_1)$ Think $(c_1 + c_2 + c_4) + Eat(c_3 + c_5) + F(c_2)$ Think $(c_2 + c_3 + c_5) + Eat(c_1 + c_4) + F(c_3)$ Think $(c_1 + c_3 + c_4) + Eat(c_2 + c_5) + F(c_4)$ Think $(c_2 + c_4 + c_5) + Eat(c_1 + c_3) + F(c_5)$

$$C = \{c_1, c_2, c_3, c_4, c_5\}$$



# Conclusion

### So far, we know:

• how to represent, in symbolic and unique way, the marking classes.

# Conclusion

#### So far, we know:

• how to represent, in symbolic and unique way, the marking classes.

To construct directly a quotient graph that represents the ordinary reachability graph, we need a way to perform a firing rule, but applied directly to the symbolic markings (next sequence).



# Symbolic Firing Rule

### We know:

• how to represent, in symbolic and unique way, the marking classes.

### We know:

• how to represent, in symbolic and unique way, the marking classes.

The definition of a symbolic firing rule that applies directly on symbolic representations, constitutes the second and final stage to obtain a quotient graph.

# Symbolic Firing rule

- Before firing, we decompose the dynamic subclasses to isolate the objects that are used to instantiate the colour functions.
- Example:

 $Z^{1,0}$  contains the chosen object to instantiate X,  $Z^1$  those that are not participating in the firing.

- We then apply the classical firing rule.
- After the firing, we must group the resulting subclasses...
$\begin{aligned} Think(Z^1+Z^3)+F(Z^1)+Eat(Z^2)\\ |Z^1|=3, |Z^2|=|Z^3|=1 \end{aligned}$ 

 $Think(Z^{1}+Z^{3})+F(Z^{1})+Eat(Z^{2})$  $|Z^{1}| = 3, |Z^{2}| = |Z^{3}| = 1$ Think $(Z^{1,0} + Z^{1,1} + Z^{1,2} + Z^{3}) +$  $F(Z^{1,0} + Z^{1,1} + Z^{1,2}) + Eat(Z^2)$  $|Z^{i}| = 1$ 

- CC BY-NC-SA CC 2015

 $(RF, Z^2)$  $Think(Z^{1}+Z^{3})+F(Z^{1})+Eat(Z^{2})$ Think(Z) + F(Z) $|Z^{1}| = 3, |Z^{2}| = |Z^{3}| = 1$ Think $(Z^{1,0} + Z^{1,1} + Z^{1,2} + Z^{3}) +$  $F(Z^{1,0} + Z^{1,1} + Z^{1,2}) + Eat(Z^2)$  $|Z^{i}| = 1$ 

|Z| = 5

 $\begin{aligned} & Think(Z^{1}+Z^{3})+F(Z^{1})+Eat(Z^{2})\\ & |Z^{1}|=3, |Z^{2}|=|Z^{3}|=1\\ & Think(Z^{1,0}+Z^{1,1}+Z^{1,2}+Z^{3})+\\ & F(Z^{1,0}+Z^{1,1}+Z^{1,2})+Eat(Z^{2})\\ & |Z^{i}|=1 \end{aligned}$ 

 $(TF, Z^{1,0})$ 

 $\begin{array}{l} Think(Z^{1,1}+Z^{1,2}+Z^3)+\\ F(Z^{1,2})+Eat(Z^{1,0}+Z^2)\\ Think(Z^2+Z^3+Z^5)+F(Z^3)+\\ Eat(Z^1+Z^4)\\ |Z^i|=1 \end{array}$ 

 $\rightarrow \begin{array}{c} Think(Z) + F(Z) \\ |Z| = 5 \end{array}$ 

 $(RF, Z^2)$ 

 $(RF, Z^2)$  $Think(Z^{1}+Z^{3})+F(Z^{1})+Eat(Z^{2})$ Think(Z) + F(Z) $|Z^{1}| = 3, |Z^{2}| = |Z^{3}| = 1$ Think $(Z^{1,0} + Z^{1,1} + Z^{1,2} + Z^{3}) +$ |Z| = 5 $F(Z^{1,0} + Z^{1,1} + Z^{1,2}) + Eat(Z^2)$  $|Z^{i}| = 1$  $(TF, Z^{1,\uparrow})$  $(TF, Z^{1,0})$ Think $(Z^{1,1} + Z^{1,2} + Z^3) +$ Think $(Z^{1,0} + Z^{1,2} + Z^3) +$  $F(Z^{1,2}) + Eat(Z^{1,0} + Z^2)$  $F(Z^{1,\dot{0}}) + Eat(Z^{1,1} + \dot{Z}^2)$ Think $(Z^1 + Z^3 + Z^5) + F(Z^1) + \dot{Z}^3$ Think  $(Z^2 + Z^3 + Z^5) + F(Z^3) +$  $Eat(Z^2 + Z^4)$  $Eat(Z^1 + Z^4)$  $|Z^{i}| = 1$  $|Z^{i}| = 1$ 

# Conclusion

#### At this stage, we know:

- how to represent, in symbolic and unique way, the marking classes,
- how to fire from a symbolic marking, a symbolic instance, to obtain the symbolic successor.

# Conclusion

#### At this stage, we know:

- how to represent, in symbolic and unique way, the marking classes,
- how to fire from a symbolic marking, a symbolic instance, to obtain the symbolic successor.

# We are ready to derive an algorithm to construct the symbolic reachability graph (next sequence).



# Symbolic Reachability Graph

## Introduction

#### Now, we know:

- how to represent, in symbolic and unique way, the marking classes,
- how to fire from a symbolic marking, a symbolic instance, to obtain the symbolic successor.

## Introduction

#### Now, we know:

- how to represent, in symbolic and unique way, the marking classes,
- how to fire from a symbolic marking, a symbolic instance, to obtain the symbolic successor.

# We are ready to derive an algorithm to construct the symbolic reachability graph.

### SRG construction Algorithm

**SRG Construction** $(N = \langle P, T, C, W^{-}, W^{+}, M_{0} \rangle)$ SRG.Q = { $\hat{M}_0$ }; SRG. $\delta = \emptyset$ ; SRG. $q_0 = \hat{M}_0$ ; sStates = { $\hat{M}_0$ }: While (sStates <> 0) {  $\hat{s}$  = pick a state in sStates ;  $sStates = sStates \setminus \{\hat{s}\};$ for each  $t \in T$ ,  $\hat{c} \in \hat{C}(t)$  { if  $(\hat{\mathbf{s}}[(t, \hat{\mathbf{c}})))$  {  $\hat{\mathbf{s}}[(t,\hat{\mathbf{c}}))\hat{\mathbf{ns}};$ if  $(\hat{ns} \notin SRG.Q)$  {  $SRG.Q = SRG.Q \cup \{\hat{ns}\};$  $sStates = sStates \cup \{\hat{ns}\};$  $SRG.\delta = SRG.\delta \cup \{(\hat{s}, \hat{ns})\};$  $SRG.\lambda(\hat{s},\hat{ns}) = (t,\hat{c});$ 

return SRG;

#### Example: SRG of the critical section access model



### Example: SRG of the dining philosophers problem

Think(Z) + F(Z)|Z| = 5(TF, Z)  $(PF, Z^2)$  $Think(Z^{1}+Z^{3})+F(Z^{1})+Eat(Z^{2})$  $|Z^1| = 3, |Z^2| = |Z^3| = 1$  $(TF, Z^{1,0}), \qquad \qquad \uparrow \uparrow (PF, Z^1), \\ (TF, Z^{1,1}) \qquad \qquad \uparrow \uparrow (PF, Z^4)$  $Think(Z^2 + Z^3 + Z^5) + F(Z^3) + Eat(Z^1 + Z^4)$  $|Z^{i}| = 1$ 

3 symbolic markings instead of 11 markings

### What does the Symbolic Reachability Graph preserve?

- Each marking represented by a class (a symbolic marking) is reachable.
- Each reachable marking is represented by a class.
- Each firing sequence of the RG is represented in the SRG.
- To each sequence of the symbolic graph corresponds a sequence of the RG.

# Then, what is missing?

• We cannot distinguish between the following situations:



# Conclusion

- So far, the approach presented imposes that all objects of the same class behave identically.
  - A class groups a set of objects that have the same nature.
  - The obtained reduction, SRG vs. RG, is maximal.
- How to deal with the case where objects have the same nature, but with potentially different behaviours?
  - Example: a class that represents a set of processors divided in two subsets: fast and slow.

# Conclusion

- So far, the approach presented imposes that all objects of the same class behave identically.
  - A class groups a set of objects that have the same nature.
  - The obtained reduction, SRG vs. RG, is maximal.
- How to deal with the case where objects have the same nature, but with potentially different behaviours?
  - Example: a class that represents a set of processors divided in two subsets: fast and slow.

#### • Use of static subclasses...

- Each class is partitioned into cells, called static subclasses, where the objects of the same cell behave identically.
- Symmetries of nets easily extend as follows... (next sequence)



# Static subclasses

## Introduction

- So far, the approach presented imposes that all objects of the same class behave identically.
  - A class groups a set of objects that have the same nature.
  - The obtained reduction, SRG vs. RG, is maximal.
- How to deal with the case where objects have the same nature, but with potentially different behaviours?
  - Example: a class that represents a set of processors divided in two subsets: fast and slow.
- Use of static subclasses...
  - Each class is partitioned into cells, called static subclasses, where the objects of the same cell behave identically.
  - Symmetries of nets easily extend as follows...

#### Symmetries, static subclasses and SNs

- Consider a net  $N = \langle P, T, C, W^-, W^+, M_0 \rangle$ , where,
  - Each class C<sub>i</sub> is partitioned into n<sub>i</sub> cells.

$$C_i = \bigcup_{j=1}^{n_i} D_{i,j}, \text{ such that } \begin{cases} \forall \ 0 < j \le n_i, |D_{i,j}| > 0, \\ \forall \ 0 < j' \le n_i, \ j \ne j' \Rightarrow D_{i,j} \cap D_{i,j'} = 0. \end{cases}$$

- $D_{i,j}$  is called a static subclass.
- The symmetries of N are defined by the set  $S = \{ \langle s_1, \dots, s_n \rangle \mid s_i \in S_i \}$ , where:
  - With each unordered class  $C_i$ , we associate a permutation subgroup  $S_i$ ,
  - 2 With each ordered class  $C_i$ , we associate a rotation subgroup  $S_i$ ,

#### Additional syntax constraints:

- Broadcast functions are defined w.r.t. subclasses (e.g. D<sub>i,j</sub>.All)
- ▶ Transition Guards are defined w.r.t. subclasses (e.g.  $[x \in D_{i,j}]$ )

### Example of SN with static subclasses



- Colour class *C* is partitioned into two static subclasses: *D*<sub>1</sub> and *D*<sub>2</sub>.
- Transition *t*<sub>1</sub> can be enabled (and fired) only by elements of *D*<sub>1</sub>.

#### Impact of static subclasses on the SRG (1/2)



#### Impact of static subclasses on the SRG (2/2)



# Conclusion

- CC BY-N CC 201 (LRDE. LIP6
- Static subclasses are needed to model complex algorithms in a compact way.
- A symbolic marking must refer, in its definition, to these static subclasses, otherwise the underlying represented markings will be spurious!
- The efficiency of the constructed SRG (the reduction factor) depends on these static subclasses:
  - When each class of the net contains only one static subclass, the reduction is maximal.
  - When the classes of the net are partitioned into static subclasses with only one element, there is no reduction.

# Conclusion

- CC BY-N CC 201 (LRDE. LIP6
- Static subclasses are needed to model complex algorithms in a compact way.
- A symbolic marking must refer, in its definition, to these static subclasses, otherwise the underlying represented markings will be spurious!
- The efficiency of the constructed SRG (the reduction factor) depends on these static subclasses:
  - When each class of the net contains only one static subclass, the reduction is maximal.
  - When the classes of the net are partitioned into static subclasses with only one element, there is no reduction.

How to deal with this last case (next sequence).



# **SN and Local Symmetries**

## Introduction

- CC BY-N - CC 201 (LRDE. LIP6
- Static subclasses are needed to model complex algorithms in a compact way.
- A symbolic marking must refer, in its definition, to the these static subclasses, otherwise the underlying represented markings will be spurious!
- The efficiency of the constructed SRG (the reduction factor) depends on these static subclasses:
  - When each class of the net contains only one static subclass, the reduction is maximal.
  - When the classes of the net are partitioned into static subclasses with only one element, there is no reduction.

We will now see how to deal with this last case.

#### Example: critical section with priorities (1/2)



• All places have  $C = \{p_1, p_2, p_3\}$  as colour domain.

• Because of the guard [X < Y] on transition  $t_4$ , *C* has to be partitioned into 3 static subclasses:  $C = D_1 \cup D_2 \cup D_3$ , where  $D_i = \{p_i\}$ , for  $i \in \{1, 2, 3\}$ .

• The guard [X < Y] is written:  $\bigvee_{i < j} (X \in D_i \land Y \in D_j)$ 

#### Example: critical section with priorities (2/2)

- Kordor



- Since all defined static subclasses are singletons, and
- the symmetries of a SN are defined according to these subclasses (i.e. only objects of the same subclass are symmetrical),
- then, the constructed SRG of this SN has the same size as the RG, i.e. no reduction is possible!
- Is it possible to deal with this problem?

### SN and partial symmetries: observation



- The problem (**asymmetry**) comes from a single transition (*t*<sub>4</sub>) and is propagated in the whole net!
- The guard and the firing of t₄ distinguish the objects ⇒ objects are asymmetrical.
- The enabling and the firing of transitions  $t_1$ ,  $t_2$ ,  $t_3$  and  $t_5$  do not need information about the identity of the objects  $\Rightarrow$  objects are symmetrical.

## SN and partial symmetries: idea

- Kordon



- Forget the asymmetries (static subclasses) while not needed to test the enabling of a transition.
- **Reintroduce** the static subclasses while testing the enabling of asymmetric transitions (transitions that refer to static subclasses).
- This way, the propagation of asymmetries will be contained in small parts.



# **Symmetric Nets with Bags**
## Introduction

- SN do not avoid the interleaving inherent to distributed systems (that could be avoided by partial order-based techniques)
- SN do not easily model multiple data association with a single "identifier"

## Introduction

- SN do not avoid the interleaving inherent to distributed systems (that could be avoided by partial order-based techniques)
- SN do not easily model multiple data association with a single "identifier"

SNB (B=bags) bring a solution to these problems

- Suppression of spurious intermediate states
  - Possibility to associate items as bags themselves
- Models are even more compact and parametrisable than with SNs

- CC 2015 - CC BY-NC-SA Petrucci ts 2015



#### Voting machine example

- CC BY-NC-S/ CC 2015 S. Baarir, F. Kordor 2015



#### Voting machine example

 Reachability graph shows all possible votes

CC BY-N CC 2015 Baarir, F. Kordo S 2015



#### Voting machine example

- Reachability graph shows all possible votes
- High complexity:

$$|V| + 1$$
 states  
 $(|V| + 2) + 1$  symbolic states  
 $(2) + 1$  symbolic states

- CC BY-N CC 2015 Baarir, F. Kord S



#### Voting machine example

- Reachability graph shows all possible votes
- High complexity:

$$3^{|V|} + 1 \text{ states} \\ \binom{|V|+2}{2} + 1 \text{ symbolic states}$$

#### Incurring problems

CC BY-N CC 2015 Baarir, F. Kord S



#### Voting machine example

- Reachability graph shows all possible votes
- High complexity:

$$\binom{|V|+1 \text{ states}}{2} + 1 \text{ symbolic states}$$

#### Incurring problems



#### Voting machine example

- Reachability graph shows all possible votes
- High complexity:

$$\binom{|V|+1 \text{ states}}{|V|+2} + 1 \text{ symbolic states}$$

#### Incurring problems

- 2<sup>|V|</sup> possible vote results
- no symbolic firing to produce all possible votes:
  - Vote categories cannot be computed symbolically
  - Limit of Symmetric Nets



# Conclusion

#### At this stage:

- you have seen a basic illustration of SNBs
- you know that SNBs capture bags of values

# Conclusion

#### At this stage:

- you have seen a basic illustration of SNBs
- you know that SNBs capture bags of values

#### Let's present the functions manipulated in SNBs and the firing rule (next sequence)



# Functions used in SNBs and firing rule

# Introduction

- the basic underlying features of SNBs
- that SNBs capture bags of values

## Introduction

Now you know:

- the basic underlying features of SNBs
- that SNBs capture bags of values

#### Let's present the functions manipulated in SNBs and the firing rule

# Functions and their use in firings



#### Functions and their use in firings



#### Bags functions used in guards

ord(x) : the rank of element x in an ordered set

Unique Y : true iff elements appear at most once in Y card(Y) : the cardinatlity of bag Y

# Conclusion

#### At this stage:

- you know the functions that operate on bags
- you know the additional functions used in guards

# Conclusion

#### At this stage:

- you know the functions that operate on bags
- you know the additional functions used in guards

#### Let's present a more complete example (next sequence)



# Second example of SNB

# Introduction

- the functions that operate on bags
- the additional functions used in guards

## Introduction

- the functions that operate on bags
- the additional functions used in guards

Let's present a more complete example

#### The global allocation mechanisms

#### A way to avoid deadlocks in systems Make one of the four necessary conditions fail

#### Principle

When a program enters a *critical section*, it must own all the resources it will need in this piece of code

#### Modeling the problem (1/6)

**Entering in the critical section** 

```
Class

Proc is [p1, p2, p3];

Res is 1..6;

Domain

BagR is Bag(Res);

P_BagR is <Proc, BagR>;

Var

p in Proc;
```

R, R2 in BagR;

# Modeling the problem (2/6)



Tutori

## Modeling the problem (3/6)



## Modeling the problem (4/6)



#### Releasing some resources (and staying in the critical section)



# Modeling the problem (5/6)



## Modeling the problem (6/6)



# Conclusion

This tutorial has presented:

- Symmetric Nets with their syntax and semantics
  - how to build the Reachability Graph
  - how to use them for system analysis
- How to use the CosyVerif platform to practice these concepts and formalisms
- The use of global symmetries to reduce the Reachability Graph
  - dynamic and static subclasses
  - the symbolic firing rule
  - the Symbolic Reachability Graph
  - The notion of partial symmetries (the idea of it)
- Symmetric Nets with Bags (SNB)

# Conclusion

This tutorial has presented:

- Symmetric Nets with their syntax and semantics
  - how to build the Reachability Graph
  - how to use them for system analysis
- How to use the CosyVerif platform to practice these concepts and formalisms
- The use of global symmetries to reduce the Reachability Graph
  - dynamic and static subclasses
  - the symbolic firing rule
  - the Symbolic Reachability Graph
  - The notion of partial symmetries (the idea of it)
- Symmetric Nets with Bags (SNB)

and next, back to practice (how to model a system with SNB)

