
Petri Nets Tutorial, from Symmetric Nets to
Symmetric Nets with Bags

(session 3)

Souheib Baarir, Fabrice Kordon, Laure Petrucci

Souheib.Baarir@lrde.epita.fr LRDE, Epita
Fabrice.Kordon@lip6.fr LIP6, Université Pierre & Marie Curie

Laure.Petrucci@lipn.univ-paris13.fr LIPN, Université Paris 13

June 23th, 2015

1 / 77

Outline

Symmetries in Symmetric Nets
I Towards the use of symmetries
I Symbolic Marking
I Symbolic Firing
I Symbolic Reachability Graph (SRG)

Symmetric nets with Bags (SNB)
I Syntactic extensions
I Semantics (Firing rule)
I “unfolding” into SN (when finite)

Conclusion

2 / 77

3 / 77

Symmetries in Symmetric Nets

4 / 77

Introduction

At this stage, you know:

Symmetric Nets with their syntax and semantics

how to build a Reachability Graph

how it can be used for system analysis

how to use CosyVerif platform to practice these concepts and formalisms.

Let’s now have an idea about the use of symmetries to reduce the size of the
constructed structures.

5 / 77

Introduction

At this stage, you know:

Symmetric Nets with their syntax and semantics

how to build a Reachability Graph

how it can be used for system analysis

how to use CosyVerif platform to practice these concepts and formalisms.

Let’s now have an idea about the use of symmetries to reduce the size of the
constructed structures.

5 / 77

Towards the use of symmetries (1/2)

〈C .All〉 Idle

C = {c1, c2, c3}

Waiting

t1
〈X〉

〈X〉

Busy Res

t3〈X〉

t2
〈X〉

〈X〉

〈X〉 M0

Idle(c1 + c2 + c3)
+Res

M1

Idle(c2 + c3)
+Waiting(c1)

+Res

c1 → c3

c2 → c2

c3 → c1

M2

Idle(c1 + c2)
+Waiting(c3)

+Res

(t1, c1) (t1, c3)

In the initial Marking, t1 is enabled for each colour instance marking of Idle.

If we apply a permutation on the transition colour, the obtained markings are
identical up to this permutation.

6 / 77

Towards the use of symmetries (1/2)

〈C .All〉 Idle

C = {c1, c2, c3}

Waiting

t1
〈X〉

〈X〉

Busy Res

t3〈X〉

t2
〈X〉

〈X〉

〈X〉 M0

Idle(c1 + c2 + c3)
+Res

M1

Idle(c2 + c3)
+Waiting(c1)

+Res

c1 → c3

c2 → c2

c3 → c1 M2

Idle(c1 + c2)
+Waiting(c3)

+Res

(t1, c1) (t1, c3)

In the initial Marking, t1 is enabled for each colour instance marking of Idle.
If we apply a permutation on the transition colour, the obtained markings are
identical up to this permutation.

6 / 77

Towards the use of symmetries (2/2)

We can represent this set of firings using variables:

Idle(x+y+z)+Res

Idle(x + y) + Waiting(z) + Res

(t1, z)
x, y, z ∈ C
x , y , z

Then, we obtain the actual firings by testing all possible instantiations for x, y
and z.

7 / 77

Permutations on Bags

Let A be a set, s a permutation on A, and a a bag of A.

s.a = s(
∑
x∈A

a(x).x) =
∑
x∈A

a(x).s(x)

In particular : s.a(s.x) = a(x) (notation : s.c = s(c))

Example:
I Let a = c1 + 2.c2 be a bag of A = {c1, c2, c3}, and
I s, with s.c1 = c3, s.c2 = c1, s.c3 = c2, be a permutation on A ,
I then, s.a = s(c1 + 2.c2) = s.c1 + 2.(s.c2) = c3 + 2.c1

8 / 77

Conclusion

At this stage, you:

know Symmetric Nets with their syntax and semantics,

have an intuitive idea about the notion of symmetries in SNs.

Let’s now study, formally, these symmetries and their usage for the
construction of a reduced reachability graph (next sequence).

9 / 77

Conclusion

At this stage, you:

know Symmetric Nets with their syntax and semantics,

have an intuitive idea about the notion of symmetries in SNs.

Let’s now study, formally, these symmetries and their usage for the
construction of a reduced reachability graph (next sequence).

9 / 77

10 / 77

Symmetries to reduce the
Reachability Graph

11 / 77

Introduction

Now, you:

know Symmetric Nets with their syntax and semantics,

have an intuitive idea about the notion of symmetries in SNs.

Let’s now study, formally, these symmetries and their usage for the
construction of a reduced reachability graph.

12 / 77

Introduction

Now, you:

know Symmetric Nets with their syntax and semantics,

have an intuitive idea about the notion of symmetries in SNs.

Let’s now study, formally, these symmetries and their usage for the
construction of a reduced reachability graph.

12 / 77

Symmetries and SNs

Consider a net N = 〈P,T ,C ,W−,W+,M0〉.1

Consider the set S = {〈s1, . . . , sn〉|si ∈ Si}, where,
1 With each unordered class Ci , we associate the (total) permutation group Si .
2 With each ordered class Ci , we associate the (total) rotation group Si .

We call S the set of symmetries of a N.

Useful properties: let Ci be a colour class and fi : C(t)→ Bag(Ci) (a colour
function) and si the associated symmetry.

1 fi = X j
i ⇒ si ◦ fi = fi ◦ si , ∀si ∈ Si .

2 fi = Ci .All ⇒ si ◦ fi = fi ◦ si = Ci .All, ∀si ∈ Si .

3 fi = X j
i ++⇒ ri ◦ fi = fi ◦ ri , ∀ri ∈ Si . (when Ci is ordered).

1At this step, we consider that transition guards do not refrence colors explicitly!
13 / 77

Markings Equivalence and Markings Classes

Markings equivalence (≡S):

M ≡S M′ ⇔ ∃s ∈ S,M′ = s.M

For each marking M, we define its marking class (orbit) with respect to S,
[M]S :

[M]S = {M′ | ∃s ∈ S,M′ = s.M}

[M]S m1 mn. . .

14 / 77

Enabling Equivalence

(t , ct) is enabled in a marking M
m

(t , s.ct) is enabled in the marking s.M

(t , ct) is enabled in a marking M
⇔ M(p) ≥ W−(p, t)(ct)
⇔ ∀c ∈ C(p),M(p)(c) ≥ W−(p, t)(ct)(c)
⇔ ∀c ∈ C(p), s.M(p)(s.c) ≥ s.W−(p, t)(ct)(s.c)
Since, s.W−(p, t)(ct) = W−(p, t)(s.ct), then
⇔ ∀c ∈ C(p), s.M(p)(s.c) ≥ W−(p, t)(s.ct)(s.c)
⇔ ∀c ∈ C(p), s.M(p)(c) ≥ s.W−(p, t)(ct)(c)
⇔ (t , s.ct) is enabled in a marking s.M

15 / 77

Firing Equivalence

M
(t ,ct)
−−−−→ M′ ⇔ s.M

(t ,s.ct)
−−−−−→ s.M′

M
(t ,ct)
−−−−→ M′

⇔ M′(p) = M(p) −W−(p, t)(ct) + W+(p, t)(ct)
⇔ s.M′(p) = s.M(p) − s.W−(p, t)(ct) + s.W+(p, t)(ct)
Since, s.W−(p, t)(ct) = W−(p, t)(s.ct), and

s.W+(p, t)(ct) = W+(p, t)(s.ct), then
⇔ s.M′(p) = s.M(p) −W−(p, t)(s.ct) + W+(p, t)(s.ct)

⇔ s.M
(t ,s.ct)
−−−−−→ s.M′

16 / 77

Conclusion

At this stage, you know:

Symmetric Nets with their syntax and semantics,

the formal definition definition of symmetries in SNs,

the formal definition of markings and firings equivalences.

How to use this notions to derive automatically a quotient reachability graph
(next sequence).

17 / 77

Conclusion

At this stage, you know:

Symmetric Nets with their syntax and semantics,

the formal definition definition of symmetries in SNs,

the formal definition of markings and firings equivalences.

How to use this notions to derive automatically a quotient reachability graph
(next sequence).

17 / 77

18 / 77

Dynamic subclasses and Symbolic
markings

19 / 77

Introduction

The definition of an adequate representation for marking classes, first
consists in constructing a quotient graph that represents the ordinary
reachability graph.

This is achieved through the notions of:

Dynamic subclasses.

Symbolic markings.

20 / 77

Introduction

The definition of an adequate representation for marking classes, first
consists in constructing a quotient graph that represents the ordinary
reachability graph.

This is achieved through the notions of:

Dynamic subclasses.

Symbolic markings.

20 / 77

Dynamic subclasses for unordered classes

We group in a set (dynamic subclass) the objects of Ci that have the same
marking.

Example:
I M = Idle(c1 + c2) + Waiting(c3) + Res

⇒ Idle(x + y) + Waiting(z) + Res
M(x) = M(y)→ Z1, |Z1| = 2
M(z) , M(x) et M(z) , M(y)→ Z2, |Z2| = 1

⇒ M̂ = Idle(Z1) + Waiting(Z2) + Res
|Z1| = 2, |Z2| = 1

(Symbolic Marking)

21 / 77

Dynamic subclasses for unordered classes

We group in a set (dynamic subclass) the objects of Ci that have the same
marking.

Example:
I M = Idle(c1 + c2) + Waiting(c3) + Res

⇒ Idle(x + y) + Waiting(z) + Res
M(x) = M(y)→ Z1, |Z1| = 2
M(z) , M(x) et M(z) , M(y)→ Z2, |Z2| = 1

⇒ M̂ = Idle(Z1) + Waiting(Z2) + Res
|Z1| = 2, |Z2| = 1

(Symbolic Marking)

21 / 77

Dynamic subclasses for ordered classes

A dynamic subclass represents objects that have the same marking and
I are consecutive in the class enumeration order, and
I the successor of the last element represented by Z i is represented by Z i+1.

Example:
I Think(c2 + c4 + c5) + Eat(c1 + c3) + F(c5)
⇒ A dynamic subclass by object.

I Think(Z2 + Z4 + Z5) + Eat(Z1 + Z3) + F(Z5),
|Z i | = 1

I Think(c1 + c3 + c5) + Eat(c2 + c4) + F(c1)
Think(c1 + c2 + c4) + Eat(c3 + c5) + F(c2)
Think(c2 + c3 + c5) + Eat(c1 + c4) + F(c3)
Think(c1 + c3 + c4) + Eat(c2 + c5) + F(c4)
Think(c2 + c4 + c5) + Eat(c1 + c3) + F(c5)

Think

C = {c1, c2, c3, c4, c5}

Eat

TF
〈X〉

〈X〉

F

RF

〈X〉

〈X〉+〈X++〉

〈X〉+〈X++〉

〈X〉

22 / 77

Conclusion

So far, we know:

how to represent, in symbolic and unique way, the marking classes.

To construct directly a quotient graph that represents the ordinary
reachability graph, we need a way to perform a firing rule, but applied

directly to the symbolic markings (next sequence).

23 / 77

Conclusion

So far, we know:

how to represent, in symbolic and unique way, the marking classes.

To construct directly a quotient graph that represents the ordinary
reachability graph, we need a way to perform a firing rule, but applied

directly to the symbolic markings (next sequence).

23 / 77

24 / 77

Symbolic Firing Rule

25 / 77

Introduction

We know:

how to represent, in symbolic and unique way, the marking classes.

The definition of a symbolic firing rule that applies directly on symbolic
representations, constitutes the second and final stage to obtain a quotient

graph.

26 / 77

Introduction

We know:

how to represent, in symbolic and unique way, the marking classes.

The definition of a symbolic firing rule that applies directly on symbolic
representations, constitutes the second and final stage to obtain a quotient

graph.

26 / 77

Symbolic Firing rule

Before firing, we decompose the dynamic subclasses to isolate the objects
that are used to instantiate the colour functions.

Example:

Idle(Z) + Res
|Z | = 3

Idle(Z1 + Z1,0) + Res
|Z1| = 2, |Z1,0| = 1

Z1,0 contains the chosen object to instantiate X, Z1 those that are not
participating in the firing.

We then apply the classical firing rule.

After the firing, we must group the resulting subclasses. . .

27 / 77

Example

Think(Z1+Z3)+F(Z1)+Eat(Z2)
|Z1| = 3, |Z2| = |Z3| = 1

Think(Z1,0 + Z1,1 + Z1,2 + Z3) +
F(Z1,0 + Z1,1 + Z1,2) + Eat(Z2)

|Z i | = 1

Think(Z) + F(Z)
|Z | = 5

(RF ,Z2)

Think(Z1,1 + Z1,2 + Z3) +
F(Z1,2) + Eat(Z1,0 + Z2)

Think(Z2 + Z3 + Z5) + F(Z3) +
Eat(Z1 + Z4)
|Z i | = 1

(TF ,Z1,0)

Think(Z1,0 + Z1,2 + Z3) +
F(Z1,0) + Eat(Z1,1 + Z2)

Think(Z1 + Z3 + Z5) + F(Z1) +
Eat(Z2 + Z4)
|Z i | = 1

(TF ,Z1,1)

28 / 77

Example

Think(Z1+Z3)+F(Z1)+Eat(Z2)
|Z1| = 3, |Z2| = |Z3| = 1

Think(Z1,0 + Z1,1 + Z1,2 + Z3) +
F(Z1,0 + Z1,1 + Z1,2) + Eat(Z2)

|Z i | = 1

Think(Z) + F(Z)
|Z | = 5

(RF ,Z2)

Think(Z1,1 + Z1,2 + Z3) +
F(Z1,2) + Eat(Z1,0 + Z2)

Think(Z2 + Z3 + Z5) + F(Z3) +
Eat(Z1 + Z4)
|Z i | = 1

(TF ,Z1,0)

Think(Z1,0 + Z1,2 + Z3) +
F(Z1,0) + Eat(Z1,1 + Z2)

Think(Z1 + Z3 + Z5) + F(Z1) +
Eat(Z2 + Z4)
|Z i | = 1

(TF ,Z1,1)

28 / 77

Example

Think(Z1+Z3)+F(Z1)+Eat(Z2)
|Z1| = 3, |Z2| = |Z3| = 1

Think(Z1,0 + Z1,1 + Z1,2 + Z3) +
F(Z1,0 + Z1,1 + Z1,2) + Eat(Z2)

|Z i | = 1

Think(Z) + F(Z)
|Z | = 5

(RF ,Z2)

Think(Z1,1 + Z1,2 + Z3) +
F(Z1,2) + Eat(Z1,0 + Z2)

Think(Z2 + Z3 + Z5) + F(Z3) +
Eat(Z1 + Z4)
|Z i | = 1

(TF ,Z1,0)

Think(Z1,0 + Z1,2 + Z3) +
F(Z1,0) + Eat(Z1,1 + Z2)

Think(Z1 + Z3 + Z5) + F(Z1) +
Eat(Z2 + Z4)
|Z i | = 1

(TF ,Z1,1)

28 / 77

Example

Think(Z1+Z3)+F(Z1)+Eat(Z2)
|Z1| = 3, |Z2| = |Z3| = 1

Think(Z1,0 + Z1,1 + Z1,2 + Z3) +
F(Z1,0 + Z1,1 + Z1,2) + Eat(Z2)

|Z i | = 1

Think(Z) + F(Z)
|Z | = 5

(RF ,Z2)

Think(Z1,1 + Z1,2 + Z3) +
F(Z1,2) + Eat(Z1,0 + Z2)

Think(Z2 + Z3 + Z5) + F(Z3) +
Eat(Z1 + Z4)
|Z i | = 1

(TF ,Z1,0)

Think(Z1,0 + Z1,2 + Z3) +
F(Z1,0) + Eat(Z1,1 + Z2)

Think(Z1 + Z3 + Z5) + F(Z1) +
Eat(Z2 + Z4)
|Z i | = 1

(TF ,Z1,1)

28 / 77

Example

Think(Z1+Z3)+F(Z1)+Eat(Z2)
|Z1| = 3, |Z2| = |Z3| = 1

Think(Z1,0 + Z1,1 + Z1,2 + Z3) +
F(Z1,0 + Z1,1 + Z1,2) + Eat(Z2)

|Z i | = 1

Think(Z) + F(Z)
|Z | = 5

(RF ,Z2)

Think(Z1,1 + Z1,2 + Z3) +
F(Z1,2) + Eat(Z1,0 + Z2)

Think(Z2 + Z3 + Z5) + F(Z3) +
Eat(Z1 + Z4)
|Z i | = 1

(TF ,Z1,0)

Think(Z1,0 + Z1,2 + Z3) +
F(Z1,0) + Eat(Z1,1 + Z2)

Think(Z1 + Z3 + Z5) + F(Z1) +
Eat(Z2 + Z4)
|Z i | = 1

(TF ,Z1,1)

28 / 77

Conclusion

At this stage, we know:

how to represent, in symbolic and unique way, the marking classes,

how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

We are ready to derive an algorithm to construct the symbolic reachability
graph (next sequence).

29 / 77

Conclusion

At this stage, we know:

how to represent, in symbolic and unique way, the marking classes,

how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

We are ready to derive an algorithm to construct the symbolic reachability
graph (next sequence).

29 / 77

30 / 77

Symbolic Reachability Graph

31 / 77

Introduction

Now, we know:

how to represent, in symbolic and unique way, the marking classes,

how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

We are ready to derive an algorithm to construct the symbolic reachability
graph.

32 / 77

Introduction

Now, we know:

how to represent, in symbolic and unique way, the marking classes,

how to fire from a symbolic marking, a symbolic instance, to obtain the
symbolic successor.

We are ready to derive an algorithm to construct the symbolic reachability
graph.

32 / 77

SRG construction Algorithm

SRG_Construction(N = 〈P,T ,C ,W−,W+,M0〉)
SRG.Q = {M̂0};SRG.δ = ∅;
SRG.q0 = M̂0; sStates = {M̂0}:
While (sStates <> ∅) {

ŝ = pick a state in sStates ;
sStates = sStates \ {ŝ};
for each t ∈ T , ĉ ∈ Ĉ(t) {

if (ŝ[(t , ĉ)〉) {
ŝ[(t , ĉ)〉n̂s;
if (n̂s < SRG.Q) {

SRG.Q = SRG.Q ∪ {n̂s} ;
sStates = sStates ∪ {n̂s};

}

SRG.δ = SRG.δ ∪ {(ŝ, n̂s)};
SRG.λ(ŝ, n̂s) = (t , ĉ);

}

}

}

return SRG;
33 / 77

Example: SRG of the critical section access model

Idle(Z) + Res
|Z | = 3

7 classes instead of
20 markings

Idle(Z1) + Waiting(Z2) + Res
|Z1| = 2, |Z2| = 1

Idle(Z1) + Waiting(Z2) + Res
|Z1| = 1, |Z2| = 2

Waiting(Z2) + Res
|Z2| = 3

Idle(Z1) + Busy(Z2)
|Z1| = 2, |Z2| = 1

Idle(Z1)+Waiting(Z2)+Busy(Z3)
|Z1| = |Z2| = |Z3| = 1

Waiting(Z1) + Busy(Z2)
|Z1| = 2, |Z2| = 1

(t1,Z)

(t1,Z1)

(t1,Z1)

(t2,Z2)

(t2,Z2)

(t2,Z2)

(t3,Z2)

(t3,Z2)

(t3,Z1)

34 / 77

Example: SRG of the dining philosophers problem

Think(Z) + F(Z)
|Z | = 5

Think(Z1+Z3)+F(Z1)+Eat(Z2)
|Z1| = 3, |Z2| = |Z3| = 1

Think(Z2 + Z3 + Z5) + F(Z3) + Eat(Z1 + Z4)
|Z i | = 1

3 symbolic markings instead of 11 markings

(TF ,Z)

(TF ,Z1,0),
(TF ,Z1,1)

(PF ,Z2)

(PF ,Z1),
(PF ,Z4)

35 / 77

What does the Symbolic Reachability Graph preserve?

Each marking represented by a class (a symbolic marking) is reachable.

Each reachable marking is represented by a class.

Each firing sequence of the RG is represented in the SRG.

To each sequence of the symbolic graph corresponds a sequence of the RG.

36 / 77

Then, what is missing?

We cannot distinguish between the following situations:

M̂0

M̂

M̂′

M0

M2

M′2

M1

M′1

M3

M′3

M0

M2

M′2

M1

M′1

M3

M′3

37 / 77

Conclusion

So far, the approach presented imposes that all objects of the same class
behave identically.

I A class groups a set of objects that have the same nature.
I The obtained reduction, SRG vs. RG, is maximal.

How to deal with the case where objects have the same nature, but with
potentially different behaviours?

I Example: a class that represents a set of processors divided in two subsets: fast
and slow.

Use of static subclasses...
I Each class is partitioned into cells, called static subclasses, where the objects of

the same cell behave identically.
I Symmetries of nets easily extend as follows... (next sequence)

38 / 77

Conclusion

So far, the approach presented imposes that all objects of the same class
behave identically.

I A class groups a set of objects that have the same nature.
I The obtained reduction, SRG vs. RG, is maximal.

How to deal with the case where objects have the same nature, but with
potentially different behaviours?

I Example: a class that represents a set of processors divided in two subsets: fast
and slow.

Use of static subclasses...
I Each class is partitioned into cells, called static subclasses, where the objects of

the same cell behave identically.
I Symmetries of nets easily extend as follows... (next sequence)

38 / 77

39 / 77

Static subclasses

40 / 77

Introduction

So far, the approach presented imposes that all objects of the same class
behave identically.

I A class groups a set of objects that have the same nature.
I The obtained reduction, SRG vs. RG, is maximal.

How to deal with the case where objects have the same nature, but with
potentially different behaviours?

I Example: a class that represents a set of processors divided in two subsets: fast
and slow.

Use of static subclasses...
I Each class is partitioned into cells, called static subclasses, where the objects of

the same cell behave identically.
I Symmetries of nets easily extend as follows...

41 / 77

Symmetries, static subclasses and SNs

Consider a net N = 〈P,T ,C ,W−,W+,M0〉, where,
I Each class Ci is partitioned into ni cells.

Ci =

ni⋃
j=1

Di,j , such that

∀ 0 < j ≤ ni , |Di,j | > 0,
∀ 0 < j′ ≤ ni , j , j′ ⇒ Di,j ∩ Di,j′ = ∅.

I Di,j is called a static subclass.

The symmetries of N are defined by the set S = {〈s1, . . . , sn〉 | si ∈ Si},
where:

1 With each unordered class Ci , we associate a permutation subgroup Si ,
2 With each ordered class Ci , we associate a rotation subgroup Si ,
3 ∀Di,j ,∀si ∈ Si : si(Di,j) = Di,j .

Additional syntax constraints:
I Broadcast functions are defined w.r.t. subclasses (e.g. Di,j .All)
I Transition Guards are defined w.r.t. subclasses (e.g. [x ∈ Di,j])

42 / 77

Example of SN with static subclasses

〈C .All〉 Idle

C = D1 ∪ D2 where
D1 = {c1, c2}, D2 = {c3, c4}

Waiting

t1
〈X〉

〈X〉

[x ∈ D1]

Busy Res

t3

〈X〉

t2
〈X〉

〈X〉

〈X〉

Colour class C is partitioned into two static
subclasses: D1 and D2.

Transition t1 can be enabled (and fired) only
by elements of D1.

43 / 77

Impact of static subclasses on the SRG (1/2)

〈C .All〉 Idle

C = D1 ∪ D2 where
D1 = {c1, c2}, D2 = {c3, c4}

Waiting

t1
〈X〉

〈X〉

[x ∈ D1]

Busy Res

t3

〈X〉

t2
〈X〉

〈X〉

〈X〉

Idle(Z) + Res
|Z | = 4

Idle(Z1) + Waiting(Z2) + Res
|Z1| = 3, |Z2| = 1

Idle(c1 + c3 + c4) + Waiting(c2) + Res
Idle(c2 + c3 + c4) + Waiting(c1) + Res

Idle(c1 + c2 + c3) + Waiting(c4) + Res
Idle(c1 + c2 + c4) + Waiting(c3) + Res

(t1,Z)

The symbolic marking defined assumes that
all colours of a class are symmetric. So, the
instantiation is trivial!

This is no more correct when static
subclasses are introduced.

44 / 77

Impact of static subclasses on the SRG (2/2)

〈C .All〉 Idle

C = D1 ∪ D2 where
D1 = {c1, c2}, D2 = {c3, c4}

Waiting

t1
〈X〉

〈X〉

[x ∈ D1]

Busy Res

t3

〈X〉

t2
〈X〉

〈X〉

〈X〉

Idle(Z1 + Z2)+Res
|Z1| = 2, |Z2| = 2
Z1 ⊆ D1, Z2 ⊆ D2

Idle(Z1+Z3)+Waiting(Z2)+Res
|Z1| = |Z2| = 1, |Z3| = 2

Z1,Z2 ⊆ D1, Z3 ⊆ D2

Idle(c1 + c3 + c4) + Waiting(c2) + Res
Idle(c2 + c3 + c4) + Waiting(c1) + Res

((t1,Z1)

A dynamic subclass must refer to the static
subclass to which it belongs (i.e. to which
the elements it represents belong).

45 / 77

Conclusion

Static subclasses are needed to model complex algorithms in a compact way.

A symbolic marking must refer, in its definition, to these static subclasses,
otherwise the underlying represented markings will be spurious!

The efficiency of the constructed SRG (the reduction factor) depends on
these static subclasses:

I When each class of the net contains only one static subclass, the reduction is
maximal.

I When the classes of the net are partitioned into static subclasses with only one
element, there is no reduction.

How to deal with this last case (next sequence).

46 / 77

Conclusion

Static subclasses are needed to model complex algorithms in a compact way.

A symbolic marking must refer, in its definition, to these static subclasses,
otherwise the underlying represented markings will be spurious!

The efficiency of the constructed SRG (the reduction factor) depends on
these static subclasses:

I When each class of the net contains only one static subclass, the reduction is
maximal.

I When the classes of the net are partitioned into static subclasses with only one
element, there is no reduction.

How to deal with this last case (next sequence).

46 / 77

47 / 77

SN and Local Symmetries

48 / 77

Introduction

Static subclasses are needed to model complex algorithms in a compact way.

A symbolic marking must refer, in its definition, to the these static subclasses,
otherwise the underlying represented markings will be spurious!

The efficiency of the constructed SRG (the reduction factor) depends on
these static subclasses:

I When each class of the net contains only one static subclass, the reduction is
maximal.

I When the classes of the net are partitioned into static subclasses with only one
element, there is no reduction.

We will now see how to deal with this last case.

49 / 77

Example: critical section with priorities (1/2)

〈C .All〉idle

Waiting

t1
〈X〉

〈X〉

g.Select

CS

t2
〈X〉

〈X〉

t3
〈X〉

〈X〉

t5〈X〉

〈C .All〉

free

t4〈X〉+〈Y〉

〈Y〉
[X < Y]

〈C .All − X〉

〈C .All〉

〈X〉

〈X〉

〈X〉

〈X〉

All places have C = {p1, p2, p3} as
colour domain.

Because of the guard [X < Y] on
transition t4, C has to be partitioned
into 3 static subclasses:
C = D1 ∪ D2 ∪ D3, where Di = {pi},
for i ∈ {1, 2, 3}.

The guard [X < Y] is written:∨
i<j (X ∈ Di ∧ Y ∈ Dj)

50 / 77

Example: critical section with priorities (2/2)

〈C .All〉idle

Waiting

t1
〈X〉

〈X〉

g.Select

CS

t2
〈X〉

〈X〉

t3
〈X〉

〈X〉

t5〈X〉

〈C .All〉

free

t4〈X〉+〈Y〉

〈Y〉
[X < Y]

〈C .All − X〉

〈C .All〉

〈X〉

〈X〉

〈X〉

〈X〉

Since all defined static subclasses
are singletons, and

the symmetries of a SN are defined
according to these subclasses (i.e.
only objects of the same subclass
are symmetrical),

then, the constructed SRG of this
SN has the same size as the RG,
i.e. no reduction is possible!

Is it possible to deal with this
problem?

51 / 77

SN and partial symmetries: observation

〈C .All〉idle

Waiting

t1
〈X〉

〈X〉

g.Select

CS

t2
〈X〉

〈X〉

t3
〈X〉

〈X〉

t5〈X〉

〈C .All〉

free

t4〈X〉+〈Y〉

〈Y〉
[X < Y]

〈C .All − X〉

〈C .All〉

〈X〉

〈X〉

〈X〉

〈X〉

The problem (asymmetry) comes
from a single transition (t4) and is
propagated in the whole net!

The guard and the firing of t4
distinguish the objects⇒ objects
are asymmetrical.

The enabling and the firing of
transitions t1, t2, t3 and t5 do not
need information about the identity
of the objects⇒ objects are
symmetrical.

52 / 77

SN and partial symmetries: idea

〈C .All〉idle

Waiting

t1
〈X〉

〈X〉

g.Select

CS

t2
〈X〉

〈X〉

t3
〈X〉

〈X〉

t5〈X〉

〈C .All〉

free

t4〈X〉+〈Y〉

〈Y〉
[X < Y]

〈C .All − X〉

〈C .All〉

〈X〉

〈X〉

〈X〉

〈X〉

Forget the asymmetries (static
subclasses) while not needed to
test the enabling of a transition.

Reintroduce the static subclasses
while testing the enabling of
asymmetric transitions (transitions
that refer to static subclasses).

This way, the propagation of
asymmetries will be contained in
small parts.

53 / 77

54 / 77

Symmetric Nets with Bags

55 / 77

Introduction

SN do not avoid the interleaving inherent to distributed systems (that could
be avoided by partial order-based techniques)

SN do not easily model multiple data association with a single “identifier”

SNB (B=bags) bring a solution to these problems

Suppression of spurious intermediate states

Possibility to associate items as bags themselves

Models are even more compact and parametrisable than with SNs

56 / 77

Introduction

SN do not avoid the interleaving inherent to distributed systems (that could
be avoided by partial order-based techniques)

SN do not easily model multiple data association with a single “identifier”

SNB (B=bags) bring a solution to these problems

Suppression of spurious intermediate states

Possibility to associate items as bags themselves

Models are even more compact and parametrisable than with SNs

56 / 77

The voting system example (1/2)

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Voting machine example

Reachability graph shows all
possible votes
High complexity:

I 3|V | + 1 states

I

(
|V |+ 2

2

)
+ 1 symbolic states

Incurring problems

2|V | possible vote results
no symbolic firing to produce all
possible votes:

I Vote categories cannot be
computed symbolically

I Limit of Symmetric Nets

57 / 77

The voting system example (1/2)

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Voting machine example
Reachability graph shows all
possible votes

High complexity:
I 3|V | + 1 states

I

(
|V |+ 2

2

)
+ 1 symbolic states

Incurring problems

2|V | possible vote results
no symbolic firing to produce all
possible votes:

I Vote categories cannot be
computed symbolically

I Limit of Symmetric Nets

57 / 77

The voting system example (1/2)

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Voting machine example
Reachability graph shows all
possible votes
High complexity:

I 3|V | + 1 states

I

(
|V |+ 2

2

)
+ 1 symbolic states

Incurring problems

2|V | possible vote results
no symbolic firing to produce all
possible votes:

I Vote categories cannot be
computed symbolically

I Limit of Symmetric Nets

57 / 77

The voting system example (1/2)

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Voting machine example
Reachability graph shows all
possible votes
High complexity:

I 3|V | + 1 states

I

(
|V |+ 2

2

)
+ 1 symbolic states

Incurring problems

2|V | possible vote results
no symbolic firing to produce all
possible votes:

I Vote categories cannot be
computed symbolically

I Limit of Symmetric Nets

57 / 77

The voting system example (1/2)

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Voting machine example
Reachability graph shows all
possible votes
High complexity:

I 3|V | + 1 states

I

(
|V |+ 2

2

)
+ 1 symbolic states

Incurring problems
2|V | possible vote results

no symbolic firing to produce all
possible votes:

I Vote categories cannot be
computed symbolically

I Limit of Symmetric Nets

57 / 77

The voting system example (1/2)

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Voting machine example
Reachability graph shows all
possible votes
High complexity:

I 3|V | + 1 states

I

(
|V |+ 2

2

)
+ 1 symbolic states

Incurring problems
2|V | possible vote results
no symbolic firing to produce all
possible votes:

I Vote categories cannot be
computed symbolically

I Limit of Symmetric Nets

57 / 77

The voting system example (2/2)

Symmetric Net Model

Ready

V = {v1, . . . , vn}

v ∈ V

Voting

start
〈V .all〉

VotedYes VotedNo

yes
〈v〉

〈v〉

no
〈v〉

〈v〉

Symmetric Net with Bags Model

Ready

V = {v1, . . . , vn}

Y ∈ Bag(V)

Voting

start
〈V .all〉

VotedYes VotedNo

vote
〈V .all〉

〈Y〉 〈~Y〉

[unique Y]

58 / 77

~

Conclusion

At this stage:

you have seen a basic illustration of SNBs

you know that SNBs capture bags of values

Let’s present the functions manipulated in SNBs
and the firing rule (next sequence)

59 / 77

Conclusion

At this stage:

you have seen a basic illustration of SNBs

you know that SNBs capture bags of values

Let’s present the functions manipulated in SNBs
and the firing rule (next sequence)

59 / 77

60 / 77

Functions used in SNBs
and firing rule

61 / 77

Introduction

Now you know:

the basic underlying features of SNBs

that SNBs capture bags of values

Let’s present the functions manipulated in SNBs and the firing rule

62 / 77

Introduction

Now you know:

the basic underlying features of SNBs

that SNBs capture bags of values

Let’s present the functions manipulated in SNBs and the firing rule

62 / 77

Functions and their use in firings

Basic functions (colours and bags)

P

Class C is [a,b,c];
Var X in C;

t

Pa C
Px C

Ps Bag(C)

Pw Bag(C)

〈X〉

〈C .all〉

〈{X}〉

〈whole(C)〉

P:
t: X=a Pa: a b c

Px: a

Ps:
Pw:

a

a
b c

Bag manipulations

C P1 a b

Class C is [a,b,c,d];
Var Y1,Y2 in Bag(C);

C P2
b

c d t

〈Y1〉

〈Y2〉

Pu C
〈Y1 ∪ Y2〉

Pd C
〈Y1 \ Y2〉

aP1: b

bP2: c d

Pd: a

P2: d

Pu: a b b c

t: Y1= a b

Y2= b c

63 / 77

Functions and their use in firings

Basic functions (colours and bags)

P

Class C is [a,b,c];
Var X in C;

t

Pa C
Px C

Ps Bag(C)

Pw Bag(C)

〈X〉

〈C .all〉

〈{X}〉

〈whole(C)〉

P:
t: X=a Pa: a b c

Px: a

Ps:
Pw:

a

a
b c

Bag manipulations

C P1 a b

Class C is [a,b,c,d];
Var Y1,Y2 in Bag(C);

C P2
b

c d t

〈Y1〉

〈Y2〉

Pu C
〈Y1 ∪ Y2〉

Pd C
〈Y1 \ Y2〉

aP1: b

bP2: c d

Pd: a

P2: d

Pu: a b b c

t: Y1= a b

Y2= b c

63 / 77

Bags functions used in guards

ord(x) : the rank of element x in an ordered set

Unique Y : true iff elements appear at most once in Y

card(Y) : the cardinatlity of bag Y

64 / 77

Conclusion

At this stage:

you know the functions that operate on bags

you know the additional functions used in guards

Let’s present a more complete example (next sequence)

65 / 77

Conclusion

At this stage:

you know the functions that operate on bags

you know the additional functions used in guards

Let’s present a more complete example (next sequence)

65 / 77

66 / 77

Second example of SNB

67 / 77

Introduction

Now you know:

the functions that operate on bags

the additional functions used in guards

Let’s present a more complete example

68 / 77

Introduction

Now you know:

the functions that operate on bags

the additional functions used in guards

Let’s present a more complete example

68 / 77

The global allocation mechanisms

A way to avoid deadlocks in systems
Make one of the four necessary conditions fail

Principle
When a program enters a critical section, it must

own all the resources it will need in this piece of code

69 / 77

Modeling the problem (1/6)

Entering in the critical section

Class
Proc is [p1, p2, p3];
Res is 1..6;

Domain
BagR is Bag(Res);
P_BagR is <Proc, BagR>;

Var
p in Proc;
R, R2 in BagR;

70 / 77

Modeling the problem (2/6)

States of the system

Resources
Res

OutCS
Proc

InCS P_BagR

71 / 77

Modeling the problem (3/6)

Entering in the critical section

<p>

<R>

<p,R>enter
[card(R)>0]

Resources
Res

OutCS
Proc

InCS P_BagR

72 / 77

Modeling the problem (4/6)

Releasing some resources (and staying in the critical section)

<p>

<R>

<p,R>enter
[card(R)>0]

<p,R \ R2>

<p,R>
<R2>

release
[card(R2)>0 and
R2 R]

Resources
Res

OutCS
Proc

InCS P_BagR

73 / 77

Modeling the problem (5/6)

Exiting the critical section

<p>

<R>

<p,R>enter
[card(R)>0]

<p>

<p,R>

<R>

exit
[card(R)>0]

<p,R \ R2>

<p,R>
<R2>

release
[card(R2)>0 and
R2 R]

Resources
Res

OutCS
Proc

InCS P_BagR

74 / 77

Modeling the problem (6/6)

Initial marking of the system

<p>

<R>

<p,R>enter
[card(R)>0]

<p>

<p,R>

<R>

exit
[card(R)>0]

<p,R \ R2>

<p,R>
<R2>

release
[card(R2)>0 and
R2 R]

Resources
Res

OutCS
Proc

InCS P_BagR

<Res.all>

<Proc.all>

75 / 77

Conclusion

This tutorial has presented:
Symmetric Nets with their syntax and semantics

I how to build the Reachability Graph
I how to use them for system analysis

How to use the CosyVerif platform to practice these concepts and formalisms

The use of global symmetries to reduce the Reachability Graph
I dynamic and static subclasses
I the symbolic firing rule
I the Symbolic Reachability Graph
I The notion of partial symmetries (the idea of it)

Symmetric Nets with Bags (SNB)

and next, back to practice (how to model a system with SNB)

76 / 77

Conclusion

This tutorial has presented:
Symmetric Nets with their syntax and semantics

I how to build the Reachability Graph
I how to use them for system analysis

How to use the CosyVerif platform to practice these concepts and formalisms

The use of global symmetries to reduce the Reachability Graph
I dynamic and static subclasses
I the symbolic firing rule
I the Symbolic Reachability Graph
I The notion of partial symmetries (the idea of it)

Symmetric Nets with Bags (SNB)

and next, back to practice (how to model a system with SNB)

76 / 77

77 / 77

